Element Atomic Number Valency
Valency of Hydrogen 1 1
Valency of Helium 2 0
Valency of Lithium 3 1
Valency of Beryllium 4 2
Valency of Boron 5 3
Valency of Carbon 6 4
Valency of Nitrogen 7 3
Valency of Oxygen 8 2
Valency of Fluorine 9 1
Valency of Neon 10 0
Valency of Sodium (Na) 11 1
Valency of Magnesium (Mg) 12 2
Valency of Aluminium 13 3
Valency of Silicon 14 4
Valency of Phosphorus 15 3
Valency of Sulphur 16 2
Valency of Chlorine 17 1
Valency of Argon 18 0
Valency of Potassium (K) 19 1
Valency of Calcium 20 2
Valency of Scandium 21 3
Valency of Titanium 22 4
Valency of Vanadium 23 5,4
Valency of Chromium 24 2
Valency of Manganese 25 7, 4, 2
Valency of Iron (Fe) 26 2, 3
Valency of Cobalt 27 3, 2
Valency of Nickel 28 2
Valency of Copper (Cu) 29 2, 1
Valency of Zinc 30 2
Question is incomplete, complete question is;
A 34.8 mL solution of
(aq) of an unknown concentration was titrated with 0.15 M of NaOH(aq).

If it takes 20.4 mL of NaOH(aq) to reach the equivalence point of the titration, what is the molarity of
? For your answer, only type in the numerical value with two significant figures. Do NOT include the unit.
Answer:
0.044 M is the molarity of
(aq).
Explanation:
The reaction taking place here is in between acid and base which means that it is a neutralization reaction .
To calculate the concentration of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

0.044 M is the molarity of
(aq).
Answer:
I believe it would be 30 chromosomes
Explanation:
Hope that this helps you ;-)
2Nabr +Ca(oh)2——->CaBr2+2NaOH