From the information given:
- The volume of the graduated cylinder = 50.0 mL
- when a sterling silver pendant is added, the volume increases to = 61.3 mL
∴
The volume of the sterling silver pendant is:
= 61.3 mL - 50.0 mL
= 11.3 mL
Since, 1 mL = 1cm³
Then;
11.3 mL = 11.3 cm³
- the density of the sterling silver = 10.25 g/cm³
Using the relation for Density; i.e.


mass = 10.25 g/cm³× 11.3 cm³
mass of the sterling silver = 115.825 grams
Recall that sterling silver has:
- 92.5% silver and;
- 7.5% copper
∴
The mass of the copper contained in the sterling silver pendant can be calculated as:

= 8.687 grams
Therefore, we can conclude that the mass of the copper contained in the sterling silver pendant is 8.687 grams
Learn more about the relation between Density, Mass, and Volume here:
brainly.com/question/24386693?referrer=searchResults
Answer is: the atom is the smallest known particle of matter.
John Dalton claimed that atom is indestructible and a<span>ll atoms of a given element are identical in mass and properties.
</span>Thomson discovered electron and found the first evidence for isotopes<span> of a stable element.</span>
Answer:
1. K<10−3
Explanation:
Equilibrium Constant is an expression which involves the concentration of the product divided by the concentration of the reactant molecules.
However the concentration of the pure liquid and pure solid is regarded as 1.
Equilibrium expression for the equation 2H2(g)+O2(g)⇌2H2O(g)
Equilibrium Constant = [H2O]^2/[H2]^2 x [O2]
Since H2O is a pure liquid, its concentration = 1
There fore;
Equilibrium Constant = 1/[H2]^2 x [O2]
This shows that the Equilibrium Constant of the equation will be less than 1 and greater than 0.
Answer:
32 ° F
Explanation:
Freezing temp for water is 32 degrees at 1 atm