Answer:
The pressure in the gas is 656mmHg
Explanation:
In calculating the pressure of the gas;
step 1: convert the height of the mercury arm to mmHg
9.60cm = 96.0 mmHg
step 2: convert 752 torr to mmHg
I torr is 1 mmHg
752 torr = 752mmHg
Step 3: since the level of mercury in the container is higher than the level of mercury exposed to the atmosphere, we substrate the values to obtain our pressure.
So, 752mmHg - 96mmHg = 656mmHg
The pressure in the gas container is therefore 656mmHg.
N. B : if the mercury arm is in lower position, you add.
Answer:
The Solar System moves through the galaxy with about a 60° angle between the galactic plane and the planetary orbital plane. The Sun appears to move up-and-down and in-and-out with respect to the rest of the galaxy as it revolves around the Milky Way
Explanation:
Hope you like it
The activity of the sample when it was shipped from the manufacturer is 4.54 mCi
<h3>How to determine the number of half-lives that has elapsed </h3>
From the question given above, the following data were obtained:
- Time (t) = 48 hours
- Half-life (t½) = 14.28 days = 14.28 × 24 = 342.72 hours
- Number of half-lives (n) =?
n = t / t½
n = 48 / 342.72
n = 0.14
<h3>How to determine the activity of the sample during shipping </h3>
- Number of half-lives (n) = 0.14
- Original activity (N₀) = 5.0 mCi
- Activity remaining (N) =?
N = N₀ / 2ⁿ
N = 5 / 2^0.14
N = 4.54 mCi
Thus, the activity of the sample during shipping is 4.54 mCi
Learn more about half life:
brainly.com/question/2674699
Answer:
Explanation:
Given:
Pressure = 745 mm Hg
Also, P (mm Hg) = P (atm) / 760
Pressure = 745 / 760 = 0.9803 atm
Temperature = 19 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (19 + 273.15) K = 292.15 K
Volume = 0.200 L
Using ideal gas equation as:
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
0.9803 atm × 0.200 L = n × 0.0821 L.atm/K.mol × 292.15 K
⇒n = 0.008174 moles
From the reaction shown below:-
1 mole of react with 2 moles of
0.008174 mole of react with 2*0.008174 moles of
Moles of = 0.016348 moles
Volume = 13.4 mL = 0.0134 L ( 1 mL = 0.001 L)
So,
<span>. increase distance , increase force.</span>