The electron is accelerated through a potential difference of

, so the kinetic energy gained by the electron is equal to its variation of electrical potential energy:

where
m is the electron mass
v is the final speed of the electron
e is the electron charge

is the potential difference
Re-arranging this equation, we can find the speed of the electron before entering the magnetic field:

Now the electron enters the magnetic field. The Lorentz force provides the centripetal force that keeps the electron in circular orbit:

where B is the intensity of the magnetic field and r is the orbital radius. Since the radius is r=25 cm=0.25 m, we can re-arrange this equation to find B:
Average speed = total distance traveled/total time taken
it is the total distance traveled in a total time the total distance is attained
Answer:
A) and B) are correct.
Explanation:
Let's take a look at the attached picture. Now
The total voltage across both capacitors is the same as the sum of the voltage from each device, that statement is true for any electrical device connected in series. So a) is TRUE
The equivalent capacitance is going to be: 
And that value can be mathematically proven that is always less than any of the values of each capacitor. So b is TRUE
And through both capacitors flow the same current, but the amount of charge depends on the value of the capacitors, so only could be the same if the capacitors are the same value. Otherwise, don't. C) not always, so FALSE
The vector sum of forces acting on a non-accelerating object equals zero.
equation form: ΣF = 0
Answer:
Usually, a solution can have several criteria and constraints. Even though all are important, some criteria are more important than others. The same holds true for constraints. But what do you do if it's impossible for a solution to cover every criterion while avoiding every constraint? In cases like this, you can use prioritization. Listing criteria and constraints based on priority shows the relative importance of each. You will need to prioritize the criteria and constraints for each sub-problem so that you can design a solution for each one individually. Prioritization can help you compare two different possible solutions. For example, the criterion that cars travel at 15 mph through the neighborhood might be a higher priority than the constraint that homeowners are only willing to spend $10,000 on this issue. If this is the case, you would want to generate solutions that also follow the priority in mind. All criteria are important, but engineers must sometimes make a trade-off, which is a compromise or change in one or more criteria or constraints so that they can be met at the same time. This is where prioritization comes in handy as it helps determine the trade-offs. A solution that is doing a better job of meeting one criterion may result in not completely meeting another criterion. Prioritization will help you choose which solution to go with.
Explanation:
I got this from quizlet :)