Answer:
The pressure will be 0.4 atm.
Explanation:
The gas laws are a set of chemical and physical laws that allow determining the behavior of gases in a closed system. The parameters evaluated in these laws are pressure, volume, temperature and moles.
As the volume increases, the gas particles (atoms or molecules) take longer to reach the walls of the container and therefore collide with them less times per unit of time. This means that the pressure will be lower because it represents the frequency of collisions of the gas against the walls. In this way pressure and volume are related, determining Boyle's law which says:
"The volume occupied by a certain gaseous mass at constant temperature is inversely proportional to pressure"
Boyle's law is expressed mathematically as:
P*V= k
If you initially have the gas at a volume V1 and press P1, when the conditions change to a volume V2 and pressure P2, the following is satisfied:
P1*V1= P2*V2
In this case:
- P1= 1.2 atm
- V1= 4 L
- P2= ?
- V2= 12 L
Replacing:
1.2 atm* 4 L= P2* 12 L
Solving:

P2= 0.4 atm
<u><em>The pressure will be 0.4 atm.</em></u>
Answer:
B. Aromatic
Explanation:
Functional groups are groups that differentiate a specific organic compound from others. A functional group determines the chemical property of the compound that possesses it.
For example, just like alkene and alcohol functional groups have characteristics double bond (=) and hydroxyl (OH) group respectively, the image in the attachment of this question has a BENZENE RING at the core of its structure, hence, the organic compound can be regarded to have an AROMATIC FUNCTIONAL GROUP.
The fusion reaction in the sun is a combination of hydrogen atoms fusing to create helium. The fusion reaction in larger stars involve much heavier elements like oxygen and iron. In supernovas, often elements like gold are produced
1.54×10 −10
one and fifty four-hundreths times ten to the power of negitiive 10
Answer:
any atom that contains six protons is the element carbon and has the atomic number 6, regardless of how many neutrons or electrons it may have.
Explanation: