Answer: the statement that is wrong about uncouplers is option A ( they allow ATP synthesis with no electron transport).
Explanation:
An uncoupler is a molecule that disrupts oxidative phosphorylation by dissociating the reactions of ATP synthesis from the electron transport chain. They allow electron transport without ATP synthesis. Their mechanism of action is basically to transport protons back into the matrix, preventing the required buildup of charge on the other side.
2,4-DNP is an example of an uncoupler.
The number of years that must be invested at a rate of 7 % to earn$ 303.52 in interest is
8 years
<em><u>calculation</u></em>
- <em><u> </u></em><em>by use of the formula A = P (1+ rt) </em>
- <em> where : A is the final amount = 542 + 303.52 =$ 845.52</em>
<em> P is the principal money to be invested = $ 542</em>
<em> r= rate= 7/100=0.07</em>
<em> t= time required</em>
<em>=$ 845.52=$ 542( 1+ 0.07 t)</em>
- <em>open the bracket</em>
- <em>= $845.53= $542 + $37.94 t</em>
- <em>like terms together</em>
=$ 845.53 -$542 = $37.94 t
=$303.52 =$37.94 t
- divide both side by $37.94
= $303.52/ $ 37.94 = $37.94t/$37.94
t= 8 years
No. It appears behind the equation
Answer:
1. The object is moving forward.
Explanation:
Answer:
Ksp = 2.74 x 10⁻⁵
Explanation:
The solubility equilibrium for Ca(OH)₂ is the following:
Ca(OH)₂(s) ⇄ Ca²⁺(aq) + 2 OH⁻(aq)
I 0 0
C + s + 2s
E s 2s
According to the ICE table, the expression for the solubility product constant (Kps) is:
Ksp = [Ca²⁺] x ([OH⁻])² = s x (2s)² = 4s³
Then, we calculate Ksp from the solubility value (s):
s = 0.019 M
⇒ Ksp = 4s³ = 4 x (0.019)³ = 2.74 x 10⁻⁵