Answer:
Explanation:
Before it hits the ground:
The initial potential energy = the final potential energy + the kinetic energy
mgH = mgh + 1/2 mv²
gH = gh + 1/2 v²
v = √(2g (H - h))
v = √(2 * 9.81 m/s² * (0.42 m - 0.21 m))
v ≈ 2.0 m/s
When it hits the ground:
Initial potential energy = final kinetic energy
mgH = 1/2 mv²
v = √(2gH)
v = √(2 * 9.81 m/s² * 0.42 m)
v ≈ 2.9 m/s
Using a kinematic equation to check our answer:
v² = v₀² + 2a(x - x₀)
v² = (0 m/s)² + 2(9.8 m/s²)(0.42 m)
v ≈ 2.9 m/s
Answer:
1777.92 m/s
Explanation:
R = Radius of asteroid = 545 km
M = Mass of planet
g = Acceleration due to gravity = 2.9 m/s²
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
Acceleration due to gravity is given by

The expression of escape velocity is given by

The escape speed is 1777.92 m/s
9.8 ms^-2 is acceleration
Considering the unknown resistence as R and using the Ohm's First Law, we have:
The equivalent resistence is given by the resistor series with the lamp resistence.

If you notice any mistake in my english, please let me know, because i am not native.