Answer: number of atoms is 5.21 · 10^24
Explanation: Atomic mass of Be is 9.012 g/mol.
Number of moles n = m/M = 78.0 g / 9.012 g/mol =
Multiply this with Avogadro number Na = 6.022*10^23 1/mol
Answer:
λ = 0.0167 m = 16.7 mm
Explanation:
The wavelength of these radio waves can be found out by using the formula for the speed of radio waves:
v = fλ
where,
v = speed of radio waves = speed of light = 3 x 10⁸ m/s
f = frequency of radio waves = 18 GHz = 18 x 10⁹ Hz
λ = Wavelength = ?
Therefore,
3 x 10⁸ m/s = (18 x 10⁹ Hz)λ
λ = (3 x 10⁸ m/s)/(18 x 10⁹ Hz)
<u>λ = 0.0167 m = 16.7 mm</u>
The theoretical yield of I2 in the reaction would be 0.23 g
<h3>Theoretical yield</h3>
This refers to the stoichiometric yield of a reaction.
From the equation of the reaction:
Ca(IO3)2 + 10 KI + 12 HCl → 6 I2 + CaCl2 + 10 KCl + 6 H2O
The mole ratio of Ca(IO3)2 and I2 is 1: 6
Mole of 15.00 mL, 0.0100 M Ca(IO3)2 = 15/1000 x 0.0100
= 0.00015 mole
Equivalent mole of I2 = 0.00015 x 6
= 0.009 mole
mass of 0.0009 I2 = 0.0009 x 253.809
= 0.23 g
More on stoichiometric calculations can be found here: brainly.com/question/6907332
Answer:
11.66 L.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If P and T are constant, and have different values of n and V:
<em>(V₁n₂) = (V₂n₁).</em>
V₁ = 25.5 L, n₁ = 3.5 mol.
V₂ = ??? L, n₂ = 3.5 mol - 1.9 mol = 1.6 mol.
<em>∴ V₂ = (V₁n₂)/(n₁)</em> = (25.5 L)(1.6 mol)/(3.5 mol) =<em> 11.66 L.</em>