Answer:
M = 0.730*m
V = 0.663*v
Explanation:
Data Given:

Conservation of Momentum:

Energy Balance:

Substitute Eq 2 into Eq 1

Using Eq 1

Answer:
Answered
Explanation:
a) What is the work done on the oven by the force F?
W = F * x
W = 120 N * (14.0 cos(37))
<<<< (x component)
W = 1341.71
b) 

= 29.4 N


W_f= 328.72 J = 329 J
c) increase in the internal energy
U_2 = mgh
= 12*9.81*14sin(37)
= 991 J
d) the increase in oven's kinetic energy
U_1 + K_1 + W_other = U_2 + K_2
0 + 0 + (W_F - W_f ) = U_2 + K_2
1341.71 J - 329 J - 991 J = K_2
K_2 = 21.71 J
e) F - F_f = ma
(120N - 29.4N ) / 12.0kg = a
a = 7.55m/s^2
vf^2 = v0^2 + 2ax
vf^2 = 2(7.55m/s)(14.0m)
V_f = 14.5396m/s
K = 1/2(mv^2)
K = 1/2(12.0kg)(14.5396m/s)
K = 87.238J
Answer:
The mass of the cargo is 
Explanation:
From the question we are told that
The radius of the spherical balloon is 
The mass of the balloon is
The volume of the spherical balloon is mathematically represented as

substituting values


The total mass the balloon can lift is mathematically represented as

where
is the density of helium with a value of

and
is the density of air with a value of

substituting values


Now the mass of the cargo is mathematically evaluated as


Answer:
a. speed, v = 0.97 c
b. time, t' = 20.56 years
Given:
t' = 5 years
distance of the planet from the earth, d = 10 light years = 10 c
Solution:
(a) Distance travelled in a round trip, d' = 2d = 20 c = L'
Now, using Length contraction formula of relativity theory:
(1)
time taken = 5 years
We know that :
time = 
5 =
(2)
Dividing eqn (1) by v on both the sides and substituting eqn (2) in eqn (1):
Squaring both the sides and Solving above eqution, we get:
v = 0.97 c
(b) Time observed from Earth:
Using time dilation:


Solving the above eqn:
t'' = 20.56 years
Force required to accelerate 10 kg object to 5.9 m/s/s ?
Mass = 10 kg
Acceleration = 5.9 m/s^2
Force = Mass * Acceleration
Force = 10 kg * 5.9 m/s^2
Force = 59 kg m /s^2 = 59 N