1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Montano1993 [528]
3 years ago
5

A batter hits a softball over a third baseman's head with speed v0 and at an angle ?from the horizontal. Immediately after the b

all is hit, the third baseman turns and runs at a constant velocity v=7.000m/s, for a time t=2.000s. He then catches the ball at the same height at which it left the bat. The third baseman was initiallyl=18.00m from home plate (the location where the ball was hit from).
a) Find v0. Use g=9.807m/s2 for the magnitude of the acceleration due to gravity. Assume that there is no air resistance.
b) Find the angle ? in degrees.
c)Find the components vxand vy of the ball’s velocity, v, 0.100 s before the ball is caught.
d)Find the vector components x and y of the ball’s position, r, 0.100 s before the ball is caught.
Physics
1 answer:
anastassius [24]3 years ago
3 0

Answer:

a) The magnitude of the initial velocity is 18.77 m/s.

b) The launching angle is 31.51°.

c) The horizontal component of the velocity at t = 1.900 s is 16.00 m/s.

The vertical component of the velocity vector at t = 1.900 s is -8.823 m/s.

d) The horizontal component of the position vector at time t = 1.900 s is 30.40 m.

The vertical component of the position vector at time t = 1.900 s is 0.9375 m

Explanation:

Hi there!

The equations for the velocity and position vector of the ball are the following:

r = (x0 + v0 · t · cos α, y0 + v0 · t · sin α + 1/2 · g · t²)

v = (v0 · cos α, v0 · sin α + g · t)

Where:

r = position vector at time t

x0 = initial horizontal position.

v0 = initial velocity.

t = time.

α = launching angle.

y0 = initial vertical position.

g = acceleration due to gravity.

v = velocity vector at time t.

a and b) First, let´s find the range of the ball, i.e. the horizontal distance traveled by the ball.

The distance traveled by the baseman can be calculated with this equation:

x = v · t

Where:

x =traveled distance.

v = velocity.

t = time

Then:

x = 7.000 m/s · 2.000 s

x = 14.00 m

The baseman runs 14.00 m. Since he was located 18.00 from the home plate, the horizontal distance traveled by the ball is (14.00 m + 18.00 m) 32.00 m.

If we locate the origin of the frame of reference at the point where the ball is hit, the initial vertical and horizontal positions (x0 and y0) are zero. Since the ball is caught at the same height at which it left the bat, the vertical position of the ball when it is caught is 0.

So, the position vector of the ball at the time when it is caught (2 s after it is hit), is the following:

r = (32.00 m, 0 m)

Using the equations of the x- and y-components of the position vector, we can obtain the initial velocity and the angle:

rx = x0 + v0 · t · cos α     (x0 = 0)

ry = y0 + v0 · t · sin α + 1/2 · g · t²         (y0 = 0)

rx = 32.00 m = v0 · 2.000 s · cos α

ry = 0 m = v0 · 2.000 s · sin α - 1/2 · 9.807 m/s² · (2.000 s)²

Solving the first equation for v0:

16.00 m/s / cos α = v0

And replacing v0 in the second equation:

0 m = 32 m · sin α / cos α - 1/2 · 9.807 m/s² · (2.000 s)²

1/2 · 9.807 m/s² · (2.000 s)² = 32 m · tan α

1/2 · 9.807 m/s² · (2.000 s)² / 32 m = tan α

α = 31.51°

<u>b) The launching angle is 31.51°</u>

The initial velocity will be:

16.00 m/s / cos α = v0

16.00 m/s / cos (31.51°) = v0

v0 = 18.77 m/s

<u>a) The magnitude of the initial velocity is 18.77 m/s.</u>

<u />

c) Let´s use the equation of the velocity vector:

v = (v0 · cos α, v0 · sin α + g · t)

vx = v0 · cos α

vy = v0 · sin α + g · t

The horizontal component of the velocity does not depend on time (neglecting air resistance).

Then:

vx = 18.77 m/s · cos (31.51°)

vx = 16.00 m/s

<u />

<u>0.100 s before the ball is caught, the horizontal component of the velocity is 16.00 m/s. </u>

Now let´s calculate the vertical component of the velocity:

vy = 18.77 m/s · sin (31.51°) - 9.807 m/s² · 1.900 s

vy = -8.823 m/s

<u>The vertical component of the velocity vector at t = 1.900 s is -8.823 m/s.</u>

d) Let´s use the same equations we have used in part a).

x = x0 + v0 · t · cos α

x = 18.77 m/s · 1.900 s · cos (31.51°)

x = 30.40 m

<u>The horizontal component of the position vector at time t = 1.900 s is 30.40 m</u>

<u />

y = y0 + v0 · t · sin α + 1/2 · g · t²

y = 18.77 m/s · 1.900 s · sin (31.51°) - 1/2 · 9.807 m/s² · (1.900 s)²

y = 0.9375 m

<u>The vertical component of the position vector at time t = 1.900 s is 0.9375 m </u>

You might be interested in
Which example best demonstrates how unbalanced forces change the speed of an object's motion?
exis [7]

I don’t see a picture but unbalanced forces could be two boys pushing with a combined force of 400 Newton’s but the surface of what the box is laying on being 600 meaning since the ground is creating a higher force in the form of friction it will slow the boys down. When forces are unbalanced it means that the object can not be still or moving at a constant speed  when one force is greater by a significant amount the object either slows quickly or accelerates fast depending on which factor is greater.

4 0
2 years ago
A light wave traveling through medium 1 strikes a boundary with medium 2 at at a 45 degree angle. the light then enters the seco
Alona [7]

Here light ray strikes to interface at an angle of 45 degree and then refracts into other medium such that it will bend towards boundary.

So here the angle of incidence will be less than the angle of refraction as light moves towards the boundary after refraction which mean it will bend away from the normal

here it can be said that medium 2 will be rarer then medium 1

So here the possible options are

1. Water  

Air

2. Diamond  

Air

So in above two options medium 1 is denser and medium 2 is rarer

8 0
2 years ago
A bungee cord has a spring constant of 82.5 N/m. After jumping, a person oscillates with a period of 7.50 s. What is the mass of
Arada [10]

Answer:

Explanation:

T = 2π √ (m/k)

T / 2π = √ (m/k)

T√k = 2π √m

(T√k) / 2π = √m

( (T√k) / 2π)^2 = m

m = ( (7.5√82.5) / 2π)^2

m = 117.66 Kg

3 0
2 years ago
Suppose we have a space ship orbiting the earth. What must happen in order for the spaceship to leave orbit and fall back toward
sdas [7]

Answer:

#2) The spaceship's forward motion must be slowed down so the earth's gravitational pull on it will be stronger than the ship's forward motion.

3 0
2 years ago
Read 2 more answers
What are the benefits of physical exercises?
makvit [3.9K]

Answer:

Manage your weight

Have lower blood pressure

Lower your risk of falls

it reduces your risk of heart attack

7 0
2 years ago
Other questions:
  • Two of the three tuning forks have known frequencies. When a 510 Hz. fork and the unknown fork are struck together, four beats p
    7·1 answer
  • Which of these best describes how an appropriate star chart is selected to locate objects in the sky
    10·1 answer
  • There is no relationship between the overtone series/harmonic series and the patterns established on a vibrating Chladni plate.
    14·1 answer
  • PLEASE HELP WILL GIVE 25 POINTS!!!!!
    8·2 answers
  • 4) A force of 500 N acts on an area of 0.05m2. Find the pressure in Pascal.
    13·1 answer
  • Please help!! :)
    14·1 answer
  • Which of the following has the least resistance?<br><br> wood<br> iron<br> copper<br> silver
    15·1 answer
  • PE (potential energy) + KE (kinetic energy) will equal ME (mechanical energy) ... explain this in your own words, or by using an
    8·2 answers
  • 6. Balsa wood with an average density of 130 kg/m3 is floating in pure water. What percentage of the wood is submerged
    9·1 answer
  • What causes changes in the state of matter?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!