Answer:
a

b

Explanation:
From the question we are told that
The initial position of the particle is 
The initial velocity of the particle is 
The acceleration is 
The time duration is 
Generally from kinematic equation

=> 
=> 
Generally from kinematic equation

Here s is the distance covered by the particle, so

=> 
Generally the final position of the particle is

=> 
=> 
Answer:
0 J
Explanation:
From the diagram below; we would notice that the Force (F) = Tension (T)
Also the angle θ adjacent to the perpendicular line = 90 °
The Workdone W = F. d
W = Fd cos θ
W = Fd cos 90°
W = Fd (0)
W = 0 J
Hence the force is perpendicular to the direction of displacement and the net work done in a circular motion in one complete revolution is = 0
At maximum height, initial velocity

Here, h is maximum height and g is acceleration due to gravity.
According to above relation, the vertical height does not depend on the mass of body it depend only upon the initial velocity.
Therefore, the 20 kg rock reach the same height as 10 kg rock.
Go upwards(i.e Rise)
This will be due to the Effects known as 'Moments'
The person who is moving towards the centre will distribute its weight towards the centre causing the end of the see saw to be lighter.
HOPE IT HELPS
Distance covered by the squirrel to look for an acorn :
d = ( 3 m/s ) × 10 s = 30 m.
Time taken to eat an Acron is 5 seconds.
Time taken to cover distance of 30 m with 2 m/s speed is :

Therefore, total time take to get back to where he started is ( 10+5+15 ) = 30 s.
Hence, this is the required solution.