In a closed system, the loss of momentum of one object is same as________ the gain in momentum of another object
according to law of conservation of momentum, total momentum before and after collision in a closed system in absence of any net external force, remains conserved . that is
total momentum before collision = total momentum after collision
P₁ + P₂ = P'₁ + P'₂
where P₁ and P₂ are momentum before collision for object 1 and object 2 respectively.
P'₁ - P₁ = - (P'₂ - P₂)
so clearly gain in momentum of one object is same as the loss of momentum of other object
Answer:
(a)0.0002778
(b)
Explanation:
(a) The minute hand has a period of 60 minutes ( or 60 * 60 = 3600 seconds) for 1 circle. Its frequency per second would be
1 / 3600 = 0.0002778
(b) The hour hand has a period of 24 hours ( or 24*60 * 60 = 86400
seconds) for 1 circle. Its frequency per second would be
Answer:
B. Maximum velocity of ejected electrons.
Explanation:
The ejection of electrons form a metal surface when the metal surface is exposed to a monochromatic electromagnetic wave of sufficiently short wavelength or higher frequency (or equivalently, above a threshold frequency), which leads to the enough energy of the wave to incident and get absorbed to the exposed surface emits electrons. This phenomenon is known as the photoelectric effect or photo-emission.
The minimum amount of energy required by a metal surface to eject an electron from its surface is called work function of metal surface.
The electrons thus emitted are called photo-electrons.
The current produced as a result is called photo electricity.
Energy of photon is given by:
where:
h = Planck's constant
frequency of the incident radiation.
Answer:
If you are meaning to say 214 the answer is 12840 minutes
Explanation:
Answer:
option C
Explanation:
given,
Force on the object = 10 N
distance of push = 5 m
Work done = ?
we know,
work done is equal to Force into displacement.
W = F . s
W = 10 x 5
W = 50 J
Work done by the object when 10 N force is applied is equal to 50 J
Hence, the correct answer is option C