Answer:
If we’re talking about objects on the Earth, the gravitational potential energy is given by:
Explanation:
PEg=mgh
so the energy is proportional to the mass ( m ), but also to the strength of the gravitational field ( g ), and the height ( h ) to which the mass is lifted.
The vertical components of velocity is 10.35 m/s and the horizontal component of velocity is 38.6 m/s
<h3>What are the components of velocity?</h3>
We know that velocity is a vector quantity, a vector often can be resolved into its components. The vertical components is V sinθ while the horizontal component is vcosθ.
Hence;
Vertical component = 40 m/s sin 15 degrees = 10.35 m/s
Horizontal component = 40 cos 15 degrees = 38.6 m/s
Learn more about components of velocity:brainly.com/question/14478315
#SPJ1
Answer:
The instantaneous velocity is the specific rate of change of position (or displacement) with respect to time at a single point (x,t) , while average velocity is the average rate of change of position (or displacement) with respect to time over an interval.Average velocity : Average velocity of a body is defined as the change in position or displacement (Δx) divided by time interval (Δt) in which that displacement occurs.
Instantaneous velocity : The instantaneous velocity of a body is the velocity of the body at any instant of time or at any point of its path .
velocity can be positive , negative or zero.
By studying speed and velocity we come to the result that at any time interval average speed of an object is equal or more than the average but instantaneous speed is equal to instantaneous velocity.
Answer:
a) P=0.25x10^-7
b) R=B*N2*E
c) N=1.33x10^9 photons
Explanation:
a) the spontaneous emission rate is equal to:
1/tsp=1/3 ms
the stimulated emission rate is equal to:
pst=(N*C*o(v))/V
where
o(v)=((λ^2*A)/(8*π*u^2))g(v)
g(v)=2/(π*deltav)
o(v)=(λ^2)/(4*π*tp*deltav)
Replacing values:
o(v)=0.7^2/(4*π*3*50)=8.3x10^-19 cm^2
the probability is equal to:
P=(1000*3x10^10*8.3x10^-19)/(100)=0.25x10^-7
b) the rate of decay is equal to:
R=B*N2*E, where B is the Einstein´s coefficient and E is the energy system
c) the number of photons is equal to:
N=(1/tsp)*(V/C*o)
Replacing:
N=100/(3*3x10^10*8.3x10^-19)
N=1.33x10^9 photons