Answer:
Initial state Final state
3 ⇒ 2
3 ⇒ 1
2 ⇒ 1
Explanation:
For this exercise we must use Bohr's atomic model
E = - 13.606 / n²
where is the value of 13.606 eV is the energy of the ground state and n is the integer.
The energy acquired by the electron in units of electron volt (eV)
E = e V
E = 12.5 eV
all this energy is used to transfer an electron from the ground state to an excited state
ΔE = 13.6060 (1 / n₀² - 1 / n²)
the ground state has n₀ = 1
ΔE = 13.606 (1 - 1/n²)
1 /n² = 1 - ΔE/13,606
1 / n² = 1 - 12.5 / 13.606
1 / n² = 0.08129
n = √(1 / 0.08129)
n = 3.5
since n is an integer, maximun is
n = 3
because it cannot give more energy than the electron has
From this level there can be transition to reach the base state.
Initial state Final state
3 ⇒ 2
3 ⇒ 1
2 ⇒ 1
Thay are on high towers because if it was below how would the water flow. Putting it on high towers gives you an advantage of the gravity with means you got free pressure without having to use a pump.
<span>Water pressure = Height * density * gravity</span>
Answer:
North
South
East
West
Explanation:
please mark me as brainliest
Given:
Dy= 20 m
Vi = 5.0 m/s horizontally
A=9.81 m/s^2
Find:
Horizontal displacement
Solution:
D=ViT+(1/2)AT^2
Dy=(1/2)AT^2
T^2=Dy/(1/2)A
T=sqrt(Dy/(1/2)A)
T=sqrt(20/4.905)
T=2.0s
Dx=ViT
Dx=(5.0)(2.0)
Dx=10. meters
Answer: The correct answer is "the speed of the wave becomes four times".
Explanation:
The relation between the speed, frequency and the wavelength is as follows:
v=f\lambda
Here, v is the speed of the wave, f is the frequency and \lambda is the wavelength.
The speed of the sound wave is directly proportional to the frequency.
In the given problem, if the speed of the sound wave is increased four times then the speed of the sound becomes four times.
Therefore, the speed of the sound wave becomes four times.