The law of conservation has been stated that the mass and energy has neither be created nor destroyed in a chemical reaction.
The law of conservation has been evident when there has been an equal number of atoms of each element in the chemical reaction.
<h3>Conservation law</h3><h3 />
The given equation has been assessed as follows:
The reactant has absence of hydrogen, while hydrogen has been present in the product. Thus, the reaction will not follow the law of conservation.
The number of atoms of each reactant has been different on the product and the reactant side. Thus, the reaction will not follow the law of conservation.
The reactant has the presence of carbon, while it has been absent in the reactant. Thus, the reaction will not follow the law of conservation.
The product has the presence of hydrogen, while it has been absent in the reactant. Thus, the reaction will not follow the law of conservation.
Learn more about conservation law, here:
brainly.com/question/2175724
<span>Here are some
pH < 7
Sour taste (though you should never use this characteristic to identify an acid in the lab)
Reacts with a metal to form hydrogen gas Increases the H+ concentration in water
Donates H+ ions<span>
Turns blue litmus indicator red</span></span>
Answer:
0.4
Explanation:
Given data:
Number of moles of SrCl₂ consumed = ?
Mass of ZnCl₂ produced = 54 g
Solution:
Chemical equation:
ZnSO₄ + SrCl₂ → SrSO₄ + ZnCl₂
Number of moles of ZnCl₂:
Number of moles = mass/ molar mass
Number of moles = 54 g/136.3 g/mol
Number of moles = 0.4 mol
Now we will compare the moles of ZnCl₂ with SrCl₂ from balance chemical equation.
ZnCl₂ : SrCl₂
1 : 1
0.4 : 0.4
Thus when 54 g of ZnCl₂ produced 0.4 moles of SrCl₂ react.
The answer is force.
Hope this helps.
1 molecule of NaCl contains 1 sodium ion (Na+), that's why if we have 3.0 moles of.
NaCl, we have 3.0 moles of Na+.
N(ions) = n(mol) · NA.
N(ions) = 3.0 moles · 6.02·1023 = 18.06 ·1023 ions.