Answer: Option B
The wavelength for a radio wave with a frequency of 2 × 10⁴ Hz is
1.5 × 10⁴ m.
Explanation:
Wavelength is the measure of distance between two successive crests or troughs in a standing wave. Also wavelength can be measured as the ratio of velocity of light to frequency. It is like this because wavelength is inversely proportional to the frequency.

As c = 3 × 10⁸ m/s and the frequency is 2 × 10⁴ Hz, then the wavelength will be

So, the wavelength for a radio wave with a frequency of 2 × 10⁴ Hz is
1.5 × 10⁴ m.
Answer:
7) λ = 0.5 m, 8) f = 4.8 10¹⁴ Hz
Explanation:
The speed of an electromagnetic wave is
c = λ f
where c is the speed of light in vacuum c = 3 10⁸ m / s
7) indicate the frequency f = 6.0 10⁸ Hz
we do not know the wavelength
λ = c / f
we calculate
λ = 3 10⁸ / 6.0 10⁸
λ = 0.5 m
8) indicate the wavelength λ = 6.25 10-7 m
we do not know the frequency
f = c / λ
we calculate
f = 3 10⁸ / 6.25 10⁻⁷
f = 0.48 10¹⁵ Hz
f = 4.8 10¹⁴ Hz
Answer:
the normal force on the rock acts perpendicular to the bowl's surface.
Explanation:
As we know that Normal force is the reaction force of two contact surfaces which always act perpendicular to the contact surfaces
Here we know that the rock is moving inside the bowl
So Normal force on the rock must perpendicular to the surface of the bowl which always passes through the center of the bowl.
Since the rock is moving in vertical plane so it must have two acceleration
1) Tangential acceleration which will increase the magnitude of the speed along the tangential path
2) Centripetal acceleration which will change the direction of the rock
So here only correct option will be
the normal force on the rock acts perpendicular to the bowl's surface.
Kinetic energy is dependent on Its position
Answer:30 cm
Explanation:
Given
object distance 
focal length of concave mirror 
height of object 
Using mirror formula




and magnification is



So height of object is same as of object .
Position :image is formed at the spot where object is placed.