Answer:
1. Mg (s) + 2Na+(aq) → 2Na(s) + Mg²⁺(aq)
2. 2K(s) + Cd²⁺(aq) → 2K⁺(aq) + Cd(s)
Explanation:
The net ionic equation of a reaction express only the chemical species that are involved in the reaction:
1. Mg (s) + Na2CrO4 (aq) → 2Na + MgCrO4(aq)
The ionic equation:
Mg (s) + 2Na+(aq) + CrO4²⁻ (aq) → 2Na + Mg²⁺ + CrO4²⁻(aq)
Subtracting the ions that don't change:
<h3>Mg (s) + 2Na+(aq) → 2Na + Mg²⁺</h3>
2. 2K(s) + Cd(NO3)2(aq) → 2KNO3(aq) + Cd(s)
The ionic equation:
2K(s) + Cd²⁺(aq) + 2NO3⁻(aq) → 2K⁺(aq) + 2NO3⁻(aq) + Cd(s)
Subtracting the ions that don't change:
<h3>2K(s) + Cd²⁺(aq) → 2K⁺(aq) + Cd(s)</h3>
Answer:
B. The products are nuclei of elements that are different from the original elements.
Answer:
the law says the temperature difference between two objects falls exponentially.
doesn't change in time and no heating or cooling would happen.
Answer:
28.01g
Explanation:
Given the weight of one mole of Cabon as 12.01g and that of oxygen as 16.00g.
The molecular weight of a compound can be gotten by adding the molar weights of the elements that constitutes the compound .
The molecular weight of the compound CO is therefore
equal to the sum of the weight of both elements.
That’s = 12.01g + 16.00g
= 28.01g
Therefore, the molecular weight of CO is 28.01g
Make sure have same amounts of species on both sides
Cu (s) + 2 AgNO3 (aq) -> Cu(NO3)2 (aq) + 2 Ag (s)