(A) We can solve the problem by using Ohm's law, which states:

where
V is the potential difference across the electrical device
I is the current through the device
R is its resistance
For the heater coil in the problem, we know

and

, therefore we can rearrange Ohm's law to find the current through the device:

(B) The resistance of a conductive wire depends on three factors. In fact, it is given by:

where

is the resistivity of the material of the wire
L is the length of the wire
A is the cross-sectional area of the wire
Basically, we see that the longer the wire, the larger its resistance; and the larger the section of the wire, the smaller its resistance.
Answer:
B)The motion of water in an ocean current
Explanation:
With respect to measurements, a vector has both a magnitude and a direction. The first three examples (maximum height of a hill, air temperature, and rain accumulation) are magnitudes only. The fourth example (motion of water in an ocean current) is a vector, because it has a magnitude (speed) and a direction (with the current).
Uhh it is used to detirmine heat
The energy carried by a single photon of frequency f is given by:

where

is the Planck constant. In our problem, the frequency of the photon is

, and by using these numbers we can find the energy of the photon: