Affects populations,
Occurs when there is genetic variation
Selects organisms with certain traits to survive.
Answer : The solubility of this compound in g/L is
.
Solution : Given,

Molar mass of
= 114.945g/mole
The balanced equilibrium reaction is,

At equilibrium s s
The expression for solubility constant is,
![K_{sp}=[Mn^{2+}][CO^{2-}_3]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BMn%5E%7B2%2B%7D%5D%5BCO%5E%7B2-%7D_3%5D)
Now put the given values in this expression, we get

The value of 's' is the molar concentration of manganese ion and carbonate ion.
Now we have to calculate the solubility in terms of g/L multiplying by the Molar mass of the given compound.

Therefore, the solubility of this compound in g/L is
.
Answer:
1.40 atm is the pressure for the gas
Explanation:
An easy problem to solve with the Ideal Gases Law:
P . V = n . R .T
T° = 370K
V = 17.3L
n = 0.8 mol
Let's replace data → P . 17.3L = 0.8mol . 0.082L.atm/mol.K . 370K
P = (0.8mol . 0.082L.atm/mol.K . 370K) / 17.3L = 1.40 atm
2Al+6HCl⇒3H₂+2AlCl₃
<h3>Further explanation
</h3>
Equalization of chemical reaction equations can be done using variables. Steps in equalizing the reaction equation:
• 1. gives a coefficient on substances involved in the equation of reaction such as a, b, or c etc.
• 2. make an equation based on the similarity of the number of atoms where the number of atoms = coefficient × index between reactant and product
• 3. Select the coefficient of the substance with the most complex chemical formula equal to 1
Reaction
Al+HCl⇒H₂+AlCl₃
aAl+bHCl⇒cH₂+AlCl₃
Al, left=a, right=1⇒a=1
Cl, left=b, right=3⇒b=3
H, left=b, right=2c⇒b=2c⇒3=2c⇒c=3/2
the equation becomes :
Al+3HCl⇒3/2H₂+AlCl₃ x2
2Al+6HCl⇒3H₂+2AlCl₃