<em>The statement that gives the relationship between energy needed in breaking a bond and the one that is released after breakin</em>g is
The amount of energy it takes to break a bond is always less than the amount of energy released when the bond is formed.
- Bond energy can be regarded as amount of energy that is required in breaking a particular bond.
- For a bond to be broken Energy will be added and when a bond is broken there will be release of energy
- Bond breaking can be regarded as endothermic process, it is regarded as endothermic because there is a lot of energy required to be absorbed.
- Where ever a bond is broken, there must be formation of another bond
- Bond forming on the other hand can be regarded as exothermic process, since there is a release of releases energy.
Therefore, more energy is required in breaking of bond compare to energy released after breaking of bond.
Learn more at : brainly.com/question/10777799?referrer=searchResults
I think the answer is 2Mg + H2O4 = Cu12O4 + 2H
I’m really not sure though so it might be wrong… I’m not the best at balancing equations lol
H2SO.Mgslfurmobile phase in this experiment
Answer:
D. The equipment needed to accommodate the high temperature and pressure will be expensive to produce.
Explanation:
Hello!
In this case, for the considered reaction, it is clear it is an exothermic reaction because it produces energy; and therefore, the higher the temperature the more reactants are yielded as the reverse reaction is favored. Moreover, since the effect of pressure is verified as favoring the side with fewer moles; in this case the products side (2 moles of ammonia).
In such a way, the high pressure favors the formation of ammonia whereas the high temperature the formation of hydrogen and nitrogen and therefore, option A is ruled out. Since the high pressure shifts the reaction rightwards and the high temperature leftwards, we would not be able to know whether the reaction has ended or not because it will be a "go and come back" process, that is why B is also discarded. Now, since hydrogen and nitrogen would be the "wastes", we discard C because they are not toxic. That is why the most accurate answer would be D. because it is actually true that such equipment is quite expensive.
Best regards!
Answer:
4.42 × 10⁻³⁷ m
Explanation:
Step 1: Given and required data
- Mass of the body (m): 1 kg
- Velocity of the body (v): 1500 m/s
- Planck's constant (h): 6.63 × 10⁻³⁴ J.s
Step 2: Calculate the de Broglie wavelenght (λ) of the body
We will use de Broglie's equation.
λ = h / m × v
λ = (6.63 × 10⁻³⁴ J.s) / 1 kg × (1500 m/s) = 4.42 × 10⁻³⁷ m