Answer:

Explanation:
The number of valence electrons tells us the group number of the neutral atom.
The atom has 4 valence electrons.
The atom is in group 4.
5 i believe the right answer
Answer:
Mass in nuclear reactions is not strictly conserved due to this principle of mass and energy being quite similar. We know that nuclear reactions release a lot of energy. This energy, though, is actually mass that is lost from nucleons, converted into energy, and lost as the mass defect.
Some mass is turned into energy, according to E=mc2.
<em><u>Explanation:</u></em>
E=mc2 is probably the most famous equation. E is the energy, m is mass, and c is the constant speed of light. Einstein came up with it to show that energy and mass are proportional - one can turn into the other, and back again.
Mass in nuclear reactions is not strictly conserved due to this principle of mass and energy being quite similar. We know that nuclear reactions release a lot of energy. This energy, though, is actually mass that is lost from nucleons, converted into energy, and lost as the mass defect.
Answer:
Substance B, boiling point of 105 °C
Explanation:
Non volatile substances have high boiling points
Explanation:
Since, the given reaction is as follows.
Hence, rate law of the reaction is as follows.
R = ![k[NO][Cl_{2}]](https://tex.z-dn.net/?f=k%5BNO%5D%5BCl_%7B2%7D%5D)
As it is known that rate of a reaction depends on the initial concentration of products. So here, the rate of reaction will depend on the concentration of NO and
. Since, power of the concentrations of each of these is equal to 1. Therefore, order of the reaction is equal to 1 + 1 = 2.
According to the rate law, reactants involved in the rate determining step are NO and
. Hence, first step of the mechanism is the rate determining step.
Also, according to the rate of reaction doubling the concentration of NO will double the rate of reaction.
The number of reactants taking part in a single step of the reaction is known as molecularity of the reaction. Therefore, molecularity of the first step of the reaction is 2.
Both the given steps are not termolecular.