Answer:
0.37 m
Explanation:
The angular frequency, ω, of a loaded spring is related to the period, T, by

The maximum velocity of the oscillation occurs at the equilibrium point and is given by

A is the amplitude or maximum displacement from the equilibrium.

From the the question, T = 0.58 and A = 25 cm = 0.25 m. Taking π as 3.142,

To determine the height we reached, we consider the beginning of the vertical motion as the equilibrium point with velocity, v. Since it is against gravity, acceleration of gravity is negative. At maximum height, the final velocity is 0 m/s. We use the equation

is the final velocity,
is the initial velocity (same as v above), a is acceleration of gravity and h is the height.


The ozone layer traps heat from the sun's heat. only three-fourths are reflected back out into space by the ozone layer. the greenhouse effect traps carbon dioxide and so does the ozone layer.
4
Just divide 12 by 3, so if it takes 3 seconds, then every second, it goes up 4.
Answer:
centimeters
Explanation:
earth's plates move only a few centimeters per year.
Answer:
Q₁ = Q₂ = 8.84 x 10⁻⁹ C
Explanation:
given,
mass of ball, m = 0.16 g = 1.6 x 10⁻⁴ Kg
ball each other, r = 6.8 cm
Weight of the ball
F_w = m g
F_w = 1.6 x 10⁻⁴ x 9.8
F_w = 1.56 x 10⁻³ N
The tension in each string is a force directed along the length of the string and is the hypotenuse of a right triangle.
we have to find the horizontal component of the forces.
The length of the string,L is 35 cm so, it will be the hypotenuse.
θ be the angle made with imaginary vertical line and the string.
now,
θ = 5.57°
horizontal component of the force = ?
vertical component of force,F_v = 1.56 x 10⁻³ N


F_h = 1.52 x 10⁻⁴ N
now, each ball will be repelled by
F = 1.52 x 10⁻⁴ N
now calculation of charges

Q₁ = Q₂ because both charge are same

Q² = 7.809 x 10⁻¹⁷
Q = 8.84 x 10⁻⁹ C
hence the change on the balls were Q₁ = Q₂ = 8.84 x 10⁻⁹ C