A solid object is found to weigh 4.784.78n in air. when it is weighed while fully immersed in water, its apparent weight is 2.482.48n. 983 is the density of the object.
The substance's density is defined as its mass per unit of volume (volumetric mass density or specific mass). Although the Latin letter D may also be used, the symbol for density that is most usually used is (the lower case Greek letter rho). where V is the volume, is the density, and m is the mass. Weight per unit volume is a common informal definition of density, however this is incorrect scientifically; the actual term is specific weight. The US oil and gas industry serves as one illustration of this. A pure substance's mass concentration in numbers is equal to its density. To make density comparisons between different systems of units easier, it is occasionally replaced by the dimensionless quantity "relative density" or "specific gravity," which is the ratio of the density of the material to that of a standard material, usually water. If a substance's relative density to water is less than one, it will float in it. Temperature and pressure have an impact on a substance's density. This variation is frequently not very noticeable for solids and liquids, but it is very noticeable for gases. As pressure is applied, an object's density rises, which reduces the object's volume. With a few rare exceptions, as temperature increases, a substance's density decreases as its volume grows.
To know more about density please refer: brainly.com/question/15164682
#SPJ4
Answer:
ac = 72 m/s²
Fc = 504 N
Explanation:
We can find the centripetal acceleration of the hammer by using the following formula:

where,
ac = centripetal acceleration = ?
v = constant speed = 12 m/s
r = radius = 2 m
Therefore,

<u>ac = 72 m/s²</u>
<u></u>
Now, the centripetal force applied by the athlete on the hammer will be:

<u>Fc = 504 N</u>
Answer:
9m/s²
Explanation:
Given parameters:
Initial velocity = 30m/s
Final velocity = 0m/s
Distance traveled = 50m
Unknown:
Deceleration = ?
Solution:
To solve this problem, we apply the proper motion equation;
V² = U² + 2aS
V is the final velocity
U is the initial velocity
a is the acceleration
S is the distance
Insert the parameters and solve;
0² = 30² + 2(a)50
-900 = 100a
a = -9m/s²
The negative value indicates deceleration.
The motorcycle decelerates at a rate of 9m/s²
It is a reflecting telescope and a compound microscope. I know this for sure