Explanation:
The given data is as follows.
Mass, m = 75 g
Velocity, v = 600 m/s
As no external force is acting on the system in the horizontal line of motion. So, the equation will be as follows.
where,
= mass of the projectile
= mass of block
v = velocity after the impact
Now, putting the given values into the above formula as follows.
![75(10^{-3}) \times 600 = [(75 \times 10^{-3}) + 50] \times v](https://tex.z-dn.net/?f=75%2810%5E%7B-3%7D%29%20%5Ctimes%20600%20%3D%20%5B%2875%20%5Ctimes%2010%5E%7B-3%7D%29%20%2B%2050%5D%20%5Ctimes%20v)
= 
v = 0.898 m/s
Now, equation for energy is as follows.
E = 
= 
= 13500 J
Now, energy after the impact will be as follows.
E' = ^{2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5B75%20%5Ctimes%2010%5E%7B-3%7D%20%2B%2050%5D%280.9%29%5E%7B2%7D)
= 20.19 J
Therefore, energy lost will be calculated as follows.
= E E'
= (13500 - 20) J
= 13480 J
And, n = 
= 
= 99.85
= 99.9%
Thus, we can conclude that percentage n of the original system energy E is 99.9%.
An example would be gravity
Answer :
C) Atom
Actual answer should be element but depends on the way you interpret the question and the options given to answer it
Explanation :
Atom is the most basic unit of any substance and is what molecules are made of.
Hope it helps if it does let me know by thanking
Answer:
22 degree
Explanation:
Angle of incidence, i = 30 degree
the refractive index of water with respect to air is 4/3.
As the ray of light travels from rarer medium to denser medium, that mean air to water, the refraction takes place.
According to Snell's law,
Refractive index of water with respect to air = Sin i / Sin r
Where, r be the angle of refraction
4 / 3 = Sin 30 / Sin r
0.75 = 2 Sin r
Sin r = 0.375
r = 22 degree
Thus, the angle of refraction is 22 degree.