Two changes would make this reaction reactant-favored
C. Increasing the temperature
D. Reducing the pressure
<h3>Further explanation</h3>
Given
Reaction
2H₂ + O₂ ⇒ 2H₂0 + energy
Required
Two changes would make this reaction reactant-favored
Solution
The formation of H₂O is an exothermic reaction (releases heat)
If the system temperature is raised, then the equilibrium reaction will reduce the temperature by shifting the reaction in the direction that requires heat (endotherms). Conversely, if the temperature is lowered, then the equilibrium shifts to a reaction that releases heat (exothermic)
While on the change in pressure, then the addition of pressure, the reaction will shift towards a smaller reaction coefficient
in the above reaction: the number of coefficients on the left is 3 (2 + 1) while the right is 2
As the temperature rises, the equilibrium will shift towards the endothermic reaction, so the reaction shifts to the left towards H₂ + O₂( reactant-favored)
And reducing the pressure, then the reaction shifts to the left H₂ + O₂( reactant-favored)⇒the number of coefficients is greater
Air moves from
high(pressure)the regions at the
poles(d0)
Option B, Bronze is made of the metals copper and tin.
Alloys are essentially materials that consist of two or more metal elements.
-T.B.
Answer:
The answer to your question is <u>111 g of CaCl₂</u>
Explanation:
Reaction
2HCl + CaCO₃ ⇒ CaCl₂ + CO₂ + H₂O
Process
1.- Calculate the molecular mass of Calcium carbonate and calcium chloride
CaCO₃ = (1 x 40) + (1 x 12) + ((16 x 3) = 100 g
CaCl₂ = (1 x 40) + (35.5 x 2) = 111 g
2.- Calculate the amount of calcium chloride produced using proportions.
The proportion CaCO₃ to CaCl₂ is 1 : 1.
100 g of CaCO₃ ------------- 111 g of CaCl₂
Then 111g of CaCl₂ will be produced.