Answer:
A drunk driver's car travel 49.13 ft further than a sober driver's car, before it hits the brakes
Explanation:
Distance covered by the car after application of brakes, until it stops can be found by using 3rd equation of motion:
2as = Vf² - Vi²
s = (Vf² - Vi²)/2a
where,
Vf = Final Velocity of Car = 0 mi/h
Vi = Initial Velocity of Car = 50 mi/h
a = deceleration of car
s = distance covered
Vf, Vi and a for both drivers is same as per the question. Therefore, distance covered by both car after application of brakes will also be same.
So, the difference in distance covered occurs before application of brakes during response time. Since, the car is in uniform speed before applying brakes. Therefore, following equation shall be used:
s = vt
FOR SOBER DRIVER:
v = (50 mi/h)(1 h/ 3600 s)(5280 ft/mi) = 73.33 ft/s
t = 0.33 s
s = s₁
Therefore,
s₁ = (73.33 ft/s)(0.33 s)
s₁ = 24.2 ft
FOR DRUNK DRIVER:
v = (50 mi/h)(1 h/ 3600 s)(5280 ft/mi) = 73.33 ft/s
t = 1 s
s = s₂
Therefore,
s₂ = (73.33 ft/s)(1 s)
s₂ = 73.33 ft
Now, the distance traveled by drunk driver's car further than sober driver's car is given by:
ΔS = s₂ - s₁
ΔS = 73.33 ft - 24.2 ft
<u>ΔS = 49.13 ft</u>
Answer:
A theory or hypothesis does not necessarily provide an accurate scientific explanation to any topic but predicts what can happen.
Explanation:
Answer:
Epithelial tissue and Muscle tissue
Explanation:
Answer:
d₂ = 1.466 m
Explanation:
In this case we must use the rotational equilibrium equations
Στ = 0
τ = F r
we must set a reference system, we use with origin at the easel B and an axis parallel to the plank
, we will use that the counterclockwise ratio is positive
+ W d₁ - w_cat d₂ = 0
d₂ = W / w d₁
d₂ = M /m d₁
d₂ = 5.00 /2.9 0.850
d₂ = 1.466 m
Answer:
Opposition of passing a electric circuit