Answer:
1) increase concentration
2) decrease the amount
3) decrease the concentration
4) it would increase
Explanation: edge 2021
Answer:
102g
Explanation:
To find the mass of ethanol formed, we first need to ensure that we have a balanced chemical equation. A balanced chemical equation is where the number of atoms of each element is the same on both sides of the equation (reactants and products). This is useful as only when a chemical equation is balanced, we can understand the relationship of the amount (moles) of reactant and products, or to put it simply, their relationship with one another.
In this case, the given equation is already balanced.

From the equation, the amount of ethanol produced is twice the amount of yeast present, or the same amount of carbon dioxide produced. Do note that amount refers to the number of moles here.
Mole= Mass ÷Mr
Mass= Mole ×Mr
<u>Method 1: using the </u><u>mass of glucose</u>
Mr of glucose
= 6(12) +12(1) +6(16)
= 180
Moles of glucose reacted
= 200 ÷180
=
mol
Amount of ethanol formed: moles of glucose reacted= 2: 1
Amount of ethanol
= 
=
mol
Mass of ethanol
= ![\frac{20}{9} \times[2(12)+6+16]](https://tex.z-dn.net/?f=%5Cfrac%7B20%7D%7B9%7D%20%5Ctimes%5B2%2812%29%2B6%2B16%5D)
= 
= 102 g (3 s.f.)
<u>Method 2: using </u><u>mass of carbon dioxide</u><u> produced</u>
Mole of carbon dioxide produced
= 97.7 ÷[12 +2(16)]
= 97.7 ÷44
=
mol
Moles of ethanol: moles of carbon dioxide= 1: 1
Moles of ethanol formed=
mol
Mass of ethanol formed
= ![\frac{977}{440} \times[2(12)+6+16]](https://tex.z-dn.net/?f=%5Cfrac%7B977%7D%7B440%7D%20%5Ctimes%5B2%2812%29%2B6%2B16%5D)
= 102 g (3 s.f.)
Thus, 102 g of ethanol are formed.
Additional:
For a similar question on mass and mole ratio, do check out the following!
Answer:
Electrolytes are substances that can ionize in water. They could be acids, bases or salts as long as they give ions when they dissolve in water.
Explanation:
- <em>Strong electrolytes</em> completely ionize when dissolved in water, leaving no neutral molecules. The strong electrolytes here are:<u> salt water</u>, <u>baking soda (NaHCO3) solution.</u>
- <em>Weak electrolytes</em> do not completely dissociate in solution, and hence have a low ionic yield. Examples of this would be<u> vinegar </u>and <u>bleach </u>(which could be sodium hypochlorite or chlorine, which are weakly dissociated).
- <em>Non-electrolytes </em>will remain as molecules and are not ionized in water at all. In this case, <u>sugar solution is a non-electrolytes</u>, even though sugar dissolves in water, but it remains as a whole molecule and not ions.
(E) ionic aluminum fluoride (AlF3)
Answer:
Energy
Explanation:
A sugar group would be used for carbohydrates or nucleic acids. An adenosine group would be used in ATP formation if I recall correct. And disaccharides are just two monosaccharides linked together, so that would also be for carbohydrates. Therefore, energy is the answer.