Gravity holds the system together
The answer is 5. To find the advantage you just divide 20 by 4.
Answer:
Its diameter increases as it flows down from the pipe. Assuming laminar flow for the water, then Bernoulli's equation can be applied.
P1-P2 + (rho)g(h1 - h2) + 1/2(rho)(v1² - v2²) = 0
Explanation:
P1 = P2 = atmospheric pressure so, P1 - P2 = 0
h1 is greater than h2 so h1-h2 is positive. Rearranging the equation above 2{ (rho)g(h1-h2) + 1/2(rho)v1²}/rho = v2²
From the continuity equation for fluids
A1v1 = A2v2
v2 = A1v1/A2
Substituting into the equation above
(A1v1/A2)² = 2{ (rho)g(h1-h2) + 1/2(rho)v1²}/rho
Making A2² the subject of the formula,
A2² = (A1v1)²× rho/(2{ (rho)g(h1-h2) + 1/2(rho)v1²}
The denominator will be greater than the numerator and as a result the diameter of the flowing stream decreases.
Thank you for reading.
Answer:
For example, when a car travels at a constant speed, the driving force from the engine is balanced by resistive forces such as air resistance and friction in the car's moving parts. The resultant force on the car is zero.
Explanation:
hope this helps
Answer:
D. Asthenosphere
Explanation:
The asthenosphere is relatively plastic part of the mantle which underlies the brittle lithosphere. In the asthenosphere, it is generally believed that the rocks are in ductile state and easily moves. It is the site of convection within the earth. In mantle convection, hot and light materials rises and keeps moving into upper crustal levels till they solidify. Here also, cold and denser materials sinks deeper till they turn to melt. This differences in temperature and density sets up a convective cell within the mantle. Several convective cells are in the mantle.