Answer: 
Explanation:
The quantity of heat required to raise the temperature of a substance by one degree Celsius is called the specific heat capacity.

Q = Heat absorbed= 16.7 kJ = 16700 J (1kJ=1000J)
m= mass of benzene = 225 g
c = specific heat capacity = 1.74 J/gK
Initial temperature of the water =
= 20.0°C = 293 k 
Final temperature of the water =
= ?
Change in temperature ,
Putting in the values, we get:


The final temperature will be 
- The wavelength of the red light in "nanometer" is 7×

- Wavelength is given as : 7×
meter
- 1 nanometer = (
meter)
- Let X= value of the wavelength in nanometer.
1 nanometer =
meter
X nanometer = 7×
meter
- <em>If we Cross multiply</em>
X nanometer = (
)
X= 7×
nanometer
Therefore, the wavelength in "nanometer" is 7×
Learn more at :brainly.com/question/12924624?referrer=searchResults
You would have to place your sensor above earth's atmosphere because it blocks out nearly all x-rays. this is why we have the Chandra observatory
hope this helps
Answer:
2.55 × 10³ J =2.55 kJ
Explanation:
Specific heat capacity of ice = 37.8 J / mol °C
Specific heat capacity of water = 76.0 J/ mol °C
Ice at -12 °C is converted to ice at 0 °C by absorbing heat Q₁
Ice at 0°C melts to water at 0 °C. Let Heat absorbed during this phase change be Q₂ .
Let heat absorbed to raise the temperature of water from 0 C to 24°C be Q₃ .
Total heat = Q = Q₁ + Q₂ + Q₃
Q₁ = (37.8 j/mol C )(5.53 g /18.01532 g/ mol )( 0-(-12)) = 139.23749 j
Q₂ =(5.53 g/18.01532 g H₂O / mol ) (6.02 x10³ j) = 1847.905 j
Q₃ = (76 j/mol C) ( (5.53 g/18.01532 g H₂O / mol )(24-0) = 559.8968 j
Total Heat required = Q = 139.23749 j + 1847.905 j + 559.8968 j
= 2547.039 j = 2.55 × 10³ J =2.55 kJ
Answer:
and 20.86 seconds are the values of the rate constant and the half-life for this process respectively..
Explanation:
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = age of sample
= let initial amount of the reactant
a = amount left after decay process
We have :


t = 95 s


Half life is given by for first order kinetics::


and 20.86 seconds are the values of the rate constant and the half-life for this process respectively..