Answer:

Explanation:
It is given that, a proton moves at constant velocity, through a region in which there is an electric field and a magnetic field such that,
The electric field is, E = 800 V/m
Magnetic field, B = 0.25 T
We know that the net force in the region of magnetic and electric field is given by Lorentz forces. But here, the proton moves with constant velocity. So, the net force acting on it is 0.
i.e.

Hence, this is the required solution.
Aw, I hate physics, is this on Apex?
Resistance can be calculated with the information given in the question.
Equation for Resistance: R = V/I
V (voltage) = 200 Volts
I (current) = 200 Amps
So 200 divided by 200 = freaking 1
Answer: R = 1 (ohms)
Hope this Helps!
Answer:
Vi = 32 [m/s]
Explanation:
In order to solve this problem we must use the following the two following kinematics equations.

The negative sign of the second term of the equation means that the velocity decreases, as indicated in the problem.
where:
Vf = final velocity = 8[m/s]
Vi = initial velocity [m/s]
a = acceleration = [m/s^2]
t = time = 5 [s]
Now replacing:
8 = Vi - 5*a
Vi = (8 + 5*a)
As we can see we have two unknowns the initial velocity and the acceleration, so we must use a second kinematics equation.

where:
d = distance = 100[m]
(8^2) = (8 + 5*a)^2 - (2*a*100)
64 = (64 + 80*a + 25*a^2) - 200*a
0 = 80*a - 200*a + 25*a^2
0 = - 120*a + 25*a^2
0 = 25*a(a - 4.8)
therefore:
a = 0 or a = 4.8 [m/s^2]
We choose the value of 4.8 as the acceleration value, since the zero value would not apply.
Returning to the first equation:
8 = Vi - (4.8*5)
Vi = 32 [m/s]
Becomes a +1 ion for this