The change in potential energy of the proton is 5.6 x
Joule
<h3>
What is a Uniform Electric Field ?</h3>
A uniform electric field is where the electric field strength is the same at all points in the field. In the uniform field, the force experienced by a charge is the same no matter where it is placed in the field.
Given that a proton moves a distance 10 cm in a uniform electric field of 3.5 kN C, in the direction of the field.
- The distance d = 10 cm = 0.1 m
- Electric field E = 3.5 KN/C
- Proton charge q = 1.6 x
C
The Work done = Fd
but F = Eq
Recall that Electric field E = F/q = V/d
Where V = potential difference.
Let us first calculate the V
E = V/d
V = Ed
Substitute all the parameters into the formula above
V = 3.5 × 10³ × 0.1
V = 350 v
from F/q = V/d
make F the subject of formula and substitute it in work formula
F = Vq/d
W.D = Vq/d x d
W.D = Vq
Substitute all the parameters into the formula above
W.D = 350 x 1.6 x 
W.D = 5.6 x
J
Work done = Energy = Potential Energy
Therefore, the change in potential energy of the proton is 5.6 x
<em> Joule</em>
<em />
Learn more about Electric Field here: brainly.com/question/14372859
#SPJ1
Answer:

Explanation:
Let's use the equation that relate the temperatures and volumes of an adiabatic process in a ideal gas.
.
Now, let's use the ideal gas equation to the initial and the final state:

Let's recall that the term nR is a constant. That is why we can match these equations.
We can find a relation between the volumes of the initial and the final state.

Combining this equation with the first equation we have:


Now, we just need to solve this equation for T₂.

Let's assume the initial temperature and pressure as 25 °C = 298 K and 1 atm = 1.01 * 10⁵ Pa, in a normal conditions.
Here,
Finally, T2 will be:

True because friction happens when two things are rubbed against each other and it creates force and sliding something vigorously against something else can create force.
Answer:
The correct answer is -
B. The velocity would double (v = 2v).
C. The wavelength would be half (λ = λ/2).
Explanation:
A wave has a speed or velocity that is related to the wavelength of the wave and the frequency of the wave and this relationship can be represented by the following equation-
Wave velocity V = Wavelength (λ) * Frequency (f)
Frequency (f) = Velocity (V) / Wavelength(λ).
The frequency and wavelength are inversely proportional and frequency and velocity are directly proportional to each other.
So, if f = 2f then,
putting value in the formula,
2f = 2v/λ, which means, f = 2v and f = λ/2
when the frequency is doubled, the wavelength will be halved and velocity will be doubled.