Explanation:
We have,
Mass of an object is 0.5 kg
Force constant of the spring is 157 N/m
The object is released from rest when the spring is compressed 0.19 m.
(A) The force acting on the object is given by :
F = kx

(B) The force is simply given by :
F = ma
a is acceleration at that instant

Answer:
Power = 0.33 Watts
Explanation:
Given the following data;
Distance = 1m
Force = 20N
First of all, we would solve for the work done by the boy.
Workdone = force * distance
Substituting into the equation, we have;
Workdone = 20*1 = 20J
Now to find power;
Power = workdone/time
Power = 20/60
Power = 0.33 Watts.
Answer:

Explanation:
Given data
Electric potential at point a is Ua=5.4×10⁻⁸J
q₂ moves to point b where a negative work done on it
Required
Electric potential energy Ub
Solution
When a particle moves from a point where the potential is Ua to a point where it is Ub the change in potential energy is equal to work done where the force exerted on the charge is conservative and work done is given by:

Now substitute the given values
So

Explanation:
- Speed is the rate of change of distance with time.
Speed = 
- Velocity is given as the displacement per unit of time:
Velocity = 
Speed and velocity are similar but speed is a scalar quantity while velocity is a vector quantity. Speed has magnitude but does not point towards a specific direction. Velocity shows both magnitude and direction and it is a vector quantity.
- Acceleration is given as the change in velocity with time. It is a vector quantity:
Acceleration = 
- Distance is how far a body moves. It is scalar quantity.
- Time is the duration of an event. It is a scalar quantity.
Learn more:
Vector calculation brainly.com/question/2678571
#learnwithBrainly
Answer:
Moving a unit "positive" test charge from A to B will result in a reduction in potential
V = K Q / R potential at a point
V2 - V1 = K Q (1 / .4 - 1 / .15) = = k Q (.15 - .4) / .06 = -4.17 K Q
V2 - V1 = -4.17 * 9 & 10E9 * 6.25 E-8
V2 - V1 = -4.17 * 562.5 J/C
V = - 2346 Volts