There are 3 possible ways of determining pH.
1. A pH meter, 2. Litmus paper/ pH test strips or 3. Titrations.
1. A pH meter works by sending a small electric current through the solution. An electrical current can only be created if there are free-moving particles such as H+ ions from an acid or OH- ions from a base. The pH meter can determine the pH by how high the conductivity is.
2. Litmus Paper or pH test strips are strips that turn a specific colour under a specific pH. This colour can then be compared to a colour chart which will tell you the pH. The downfall of this method is that the red ink will stain the strip and you will be unable to get an accurate reading.
3. A titration is the best method, if done properly, for determining pH.
Answer:
1.Improves electric reliability.
2.Enhance recovery.
3.Promotes clean energy.
Explanation:
Some people suffering from the darkness still had their lights from facilities with microgrids.Power outages they can be dangerous.Microgrids keep the power flowing by disconnecting.It also generate possibly batteries then the microgrids customers are served until power is restored on the Central grid.
Answer:
The answer to your question is: KNO₃
Explanation:
AgNO3 + KCl → AgCl + −−−−
A. KNO3 this option is correct because it is a double replacement reaction then potassium must attached to NO₃.
B. KOH this product is not possible because there is no water to form OH⁻ ions.
C. Ag2K this product is not possible because both Ag and K are metals, then it is difficult that they attach.
D. KN2O This product is imposible to form, this option is wrong.
Answer:
A piece of gold foil was hit with alpha particles, which have a positive charge. Most alpha particles went right through. This showed that the gold atoms were mostly empty space. Some particles had their paths bent at large angles. A few even bounced backward. The only way this would happen was if the atom had a small, heavy region of positive charge inside it.
The balanced chemical equation for the above reaction is as follows;
2LiOH + H₂SO₄ ---> Li₂SO₄ + 2H₂O
stoichiometry of base to acid is 2:1
Number of OH⁻ moles reacted = number of H⁺ moles reacted at neutralisation
Number of LiOH moles reacted = 0.400 M / 1000 mL/L x 20.0 mL = 0.008 mol
number of H₂SO₄ moles reacted - 0.008 mol /2 = 0.004 mol
Number of H₂SO₄ moles in 1 L - 0.500 M
This means that 0.500 mol in 1 L solution
Therefore 0.004 mol in - 1/0.500 x 0.004 = 0.008 L
therefore volume of acid required = 8 mL