Answer:
The angle of twist can be computed using the material’s shear modulus if and only if the shear stress is still in the elastic region
Explanation:
The shear modulus (G) is the ratio of shear stress to shear strain. Like the modulus of elasticity, the shear modulus is governed by Hooke’s Law: the relationship between shear stress and shear strain is proportional up to the proportional limit of the material. The angle of twist can be computed using the material’s shear modulus if and only if the shear stress is still in the elastic region.
Answer:
the overall heat transfer coefficient of this heat exchanger is 1855.8923 W/m²°C
Explanation:
Given:
d₁ = diameter of the tube = 1 cm = 0.01 m
d₂ = diameter of the shell = 2.5 cm = 0.025 m
Refrigerant-134a
20°C is the temperature of water
h₁ = convection heat transfer coefficient = 4100 W/m² K
Water flows at a rate of 0.3 kg/s
Question: Determine the overall heat transfer coefficient of this heat exchanger, Q = ?
First at all, you need to get the properties of water at 20°C in tables:
k = 0.598 W/m°C
v = 1.004x10⁻⁶m²/s
Pr = 7.01
ρ = 998 kg/m³
Now, you need to calculate the velocity of the water that flows through the shell:

It is necessary to get the Reynold's number:

Like the Reynold's number is greater than 10000, the regime is turbulent. Now, the Nusselt's number:

The overall heat transfer coefficient:

Here

Substituting values:

Answer:
(a) Flow rate of vehicles = No of vehicles per mile * Speed
=No of cars per mile * Speed +No of trucks per mile * Speed
= 0.75*50*60 + 0.25*50*40
=2750 vehicles / hour
(b) Let Density of vehicles on grade = x
Density on flat * Speed =Density on grade * Speed
So,( 0.75*50) * 60 + (0.25*50) * 40 = (0.75* x) * 55 + (0.25* x) * 25
So, x= 57.89
So, Density is around 58 Vehicles per Mile.
(c) Percentage of truck by aerial photo = 25%
(d)Percentage of truck bystationary observer on the grade= 25*30/60 * 25/55 =22.73 %
Answer:
Java program explained below
Explanation:
FindSpecialNumber.java
import java.util.Scanner;
public class FindSpecialNumber {
public static void main(String[] args) {
//Declaring variable
int number;
/*
* Creating an Scanner class object which is used to get the inputs
* entered by the user
*/
Scanner sc = new Scanner(System.in);
//getting the input entered by the user
System.out.print("Enter a number :");
number = sc.nextInt();
/* Based on user entered number
* check whether it is special number or not
*/
if (number == -99 || number == 0 || number == 44) {
System.out.println("Special Number");
} else {
System.out.println("Not Special Number");
}
}
}
_______________
Output#1:
Enter a number :-99
Special Number
Output#2:
Enter a number :49
Not Special Number
Answer: answer provided in the explanation section.
Explanation:
Weather phenomenons that would impart Aviation Operations in Santa Barbara -
1. Although winters are cold, wet, and partly cloudy here. It is in general favorable for flying. But sometimes strong winds damage this pleasant weather.
2. The Sundowner winds cause rapid warming and a decrease in relative humidity. The wind speed is very high surrounding this area for this type of wind.
3. Cloud is an important factor that affects aviation operations. Starting from April, here the sky is clouded up to November. The sky is overcast (80 to 100 percent cloud cover) or mostly cloudy (60 to 80 percent) 44% on a yearly basis. Thus extra cloud cover can trouble aviation operations.
4. The average hourly wind speed can also be a factor. This also experiences seasonal variations, these variations are studied carefully in the aviation industry. The windier part of the year starts in January and ends in June. In April, the wind speed can reach 9.5 miles per hour.
This and more are some factors to look into when considering wheather conditions that would affect aviation operations.
I hope this was a bit helpful. cheers