Answer:
3.50 molal
Explanation:
Molality → Moles of solute / kg of solvent.
Let's convert the solvent's mass from g to kg
16.2 g . 1kg / 1000 g = 0.0162 kg
Let's determine the moles from the solute
2.61 g . 1 mol / 46 g = 0.0567 moles
Molality → 0.0567 mol / 0.0162 kg = 3.50 m
Answer:
ΔH = -470.4kJ
Explanation:
It is possible to sum 2 or more reactions to obtain the ΔH of the reaction you want to study (Hess's law). Using the reactions:
1. CaC2(s) + 2H2O(l) → C2H2(g) + Ca(OH)2(s)ΔH = −414kJ
2. 6C2H2(g) + 3CO2(g) + 4H2O(g) → 5CH2CHCO2H(g)ΔH = 132kJ
6 times the reaction 1.
6CaC2(s) + 12H2O(l) → 6C2H2(g) + 6Ca(OH)2(s)ΔH = −414kJ*6 = -2484kJ
This reaction + 2:
6CaC2(s) + 3CO2(g) + 16H2O(l) → + 6Ca(OH)2(s) + 5CH2CHCO2H(g) ΔH = -2484kJ + 132kJ = -2352kJ
As we want to calculate the net change enthalpy in the formation of just 1 mole of acrylic acid we need to divide this last reaction in 5:
6/5CaC2(s) + 3/5CO2(g) + 16/5H2O(l) → + 6/5Ca(OH)2(s) + CH2CHCO2H(g) ΔH = -2352kJ / 5
<h3>ΔH = -470.4kJ</h3>
The reaction must be a + b --> c
Then you can predict a reaction rate, r o the type r = k * a^n * b^m
Given that the reaction rate is not affected by the concentration of b you can state that m = 0 and r = k * a^n.
Now given, that there is a proportional relation between the reaction rate and a (double a gives double rate), then n = 1 and r = k*a. You can verify that if you dobule a r also doubles.
Answer: r = k*a
1st part.)). The rest of the water goes into oceans and underground.