Answer:
518 mL
Explanation:
We can solve this using Boyle's Law Formula
P1V1 = P2V2
where p1 = initial pressure, p2 = final pressure, v1 = initial volume and v2 = final volume
here , the initial pressure is 1 atm and the initial volume is 725mL
we are given the final pressure 1.4 and we need to find the final volume
so we have p1v1 = p2v2
==> plug in p1 = 1 , v1 = 725 mL and p2 = 1.4
(1)(725) = (1.4)v2
==> multiply 1 and 725
725 = (1.4)(v2)
==> divide both sides by 1.4
v2 = 518
N2 would have a volume of 518mL at 1.4atm
So you have to draw a line throw the papa per
Complete Question:
A chemist adds 55.0 mL of a 1.1M barium acetate (Ba(C2H3O2)2) solution to a reaction flask. Calculate the mass in grams of barium acetate the chemist has added to the flask. Round your answer to 2 significant digits.
Answer:
15 g
Explanation:
The concentration of the barium acetate is given in mol/L (M), thus, the number of moles (n) of it is the concentrantion multiplied by the volume (55.0 mL = 0.055 L):
n = 1.1 * 0.055
n = 0.0605 mol
The molar mass of the substance can be calculated by the sum of the molar mass of each element, which can be found at the periodic table. Thus:
Ba = 137.33 g/mol
C = 12.00 g/mol
H = 1.00 g/mol
O = 16.00 g/mol
Ba(C2H3O2)2 = 137.33 + 4*12 + 6*1 + 4*16 = 255.33 g/mol
The molar mass is the mass divided by the number of moles, thus the mass (m) is the molar mass multiplied by the number of moles.
m = 255.33 * 0.0605
m = 15.45 g
Rounded by 2 significant digits, m = 15 g.
I believe the awnser is salt water i took a test on it recently and that was the awnser.