To solve this problem it is necessary to apply the concepts related to frequency as a function of speed and wavelength as well as the kinematic equations of simple harmonic motion
From the definition we know that the frequency can be expressed as
Where,
Therefore the frequency would be given as
The frequency is directly proportional to the angular velocity therefore
Now the maximum speed from the simple harmonic movement is given by
Where
A = Amplitude
Then replacing,
Therefore the maximum speed of a point on the string is 3.59m/s
The answer is c because the farther apart they are the greater there gravity is
During that period of time, the bird's displacement was 4 km east. So its velocity was (4km east)/(11hrs). That's 0.36 km/hour east. (rounded)
If an object's velocity is steadily increasing it means that the acceleration is constant at a certain value.
Choice A shows an acceleration of zero which would only be true if the object was not moving or if its velocity was not changing.
Choice B gives us a graph showing acceleration increasing over time and is therefore incorrect.
Choice C is correct because the acceleration is constant. Steadily increasing tells us that the acceleration is fixed at a certain value.
Choice D is incorrect an represents a constant negative acceleration. This would be the case if the object was steadily decreasing in velocity.
Yes omg yes I literally have the same question and need to find the answer