Momentums equation is just p=mv
mass times velocity so 50x200
p=10,000
The "speed only" equivalent of vector is scalar
The constant angular acceleration (in rad/s2) of the centrifuge is 194.02 rad/s².
<h3> Constant angular acceleration</h3>
Apply the following kinematic equation;
ωf² = ωi² - 2αθ
where;
- ωf is the final angular velocity when the centrifuge stops = 0
- ωi is the initial angular velocity
- θ is angular displacement
- α is angular acceleration
ωi = 3400 rev/min x 2π rad/rev x 1 min/60s = 356.05 rad/s
θ = 52 rev x 2π rad/rev = 326.7 rad
0 = ωi² - 2αθ
α = ωi²/2θ
α = ( 356.05²) / (2 x 326.7)
α = 194.02 rad/s²
Thus, the constant angular acceleration (in rad/s2) of the centrifuge is 194.02 rad/s².
Learn more about angular acceleration here: brainly.com/question/25129606
#SPJ1
Solution:
f ( t )= 20 S ( t ) + 55/30 tS ( t )− 55/30 ( t − 30 ) S ( t − 30 )
• Taking the Laplace Transform:
F ( s ) = 20/s + 55/30 ( 1/s^2 ) – 55/30 ( 1/s^2) e^-30s = 20/s + 55/30 ( 1/s^2 ) ( 1 – e^-30s)