Answer:
<u><em>Electric Potential Energy:</em></u>
The energy that is needed to move a charge against an electric firld is called Electric Potential Energy
<u><em>Electric Potential Difference:</em></u>
The amount of work done in carrying a unit charge from one point to an other in an electric field is called Electric Potential Difference.
<u><em>Relation:</em></u>
Relation between Electric potential and electrical potential energy is given by
Here PE represents Electric potential energy
and is Electric potential difference
it means electric potential difference is the difference in electric potential energy divided by the charge.
Yes ggejekkekwujhhnjhhdndnksiiieinrnnfjdjjnnsnndnbduiiitnnfnsoqoosofndbdod
Answer:
6 amps
Explanation:by Kirchhoff's loop rule the current at any point in the loop must be equal or charge would be building up. The current at the ammeter is equally to the total current through the sun of the paths in parallel which it is in series with
Answer:
48 m
Explanation:
Two trains traveling towards one another on a straight track are 300m apart when the engineers on both trains become aware of the impending Collision and hit their brakes. The eastbound train, initially moving at 97.0 km/h Slows down at 3.50ms^2. The westbound train, initially moving at 127 km/h slows down at 4.20 m/s^2.
The eastbound train
First convert km/h to m/s
(97 × 1000)/3600
97000/3600
26.944444 m/s
As the train is decelerating, final velocity V = 0 and acceleration a will be negative. Using third equation of motion
V^2 = U^2 - 2as
O = 26.944^2 - 2 × 3.5 S
726 = 7S
S = 726/7
S1 = 103.7 m
The westbound train
Convert km/h to m/s
(127×1000)/3600
127000/3600
35.2778 m/s
Using third equation of motion
V^2 = U^2 - 2as
0 = 35.2778^2 - 2 × 4.2 × S
1244.52 = 8.4S
S = 1244.52/8.4
S2 = 148.2 m
S1 + S2 = 103.7 + 148.2 = 251.86
The distance between them once they stop will be
300 - 251.86 = 48.14 m
Therefore, the distance between them once they stop is 48 metres approximately.