<u>Answer:</u>
The correct answer option is D. The distance between the planet and the Sun changes as the planet orbits the sun.
<u>Explanation:</u>
Kepler’s laws of planetary motion, derived by the German astronomer Johannes Kepler, are the laws of physics that describe the motions of the planets in the solar system.
According to the Kepler's first law of planetary motion: the path on which the planets orbit around the sun is elliptical in shape, with the center of the sun at one focus.
Therefore, the distance between the Sun and the planets vary as the planet orbit around the sun.
Answer:

Acceleration, in m/s, of such a rock fragment = 
Explanation:
According to Newton's Third Equation of motion

Where:
is the final velocity
is the initial velocity
a is the acceleration
s is the distance
In our case:

So Equation will become:

Acceleration, in m/s, of such a rock fragment = 
<h3><u>Answer;</u></h3>
the north end to the south end.
<h3><u>Explanation;</u></h3>
- Magnetic field lines from a bar magnet form lines that are closed. The direction of magnetic field is taken to be outward from the North pole of the magnet and in to the South pole of the magnet.
- A magnetic field refers to the area surrounding a magnet where a force is exerted on certain objects. These lines are spread out of the north end of the magnet.
- The magnetic field lines resemble a bubble.
Answer:
340 W
Explanation:
Power = change in energy / change in time
P = ΔKE / Δt
P = ½ mv² / Δt
P = ½ (90 kg) (15 m/s)² / (30 s)
P = 337.5 W
Rounded to 2 significant figures, the power is 340 W.
I found the answer for you if u need any help ask anytime!