Osmosis is the diffusion of water from a high concentration to a lower concentration
Answer:
c
Explanation:
b and d are out, the variables are changed. a would be a repetition, not a replication. c uses the same method and variables with a different control group
Answer:
108.43 grams KNO₃
Explanation:
To solve this problem we use the formula:
Where
- ΔT is the temperature difference (14.5 K)
- Kf is the cryoscopic constant (1.86 K·m⁻¹)
- b is the molality of the solution (moles KNO₃ per kg of water)
- and<em> i</em> is the van't Hoff factor (2 for KNO₃)
We <u>solve for b</u>:
- 14.5 K = 1.86 K·m⁻¹ * b * 2
Using the given volume of water and its density (aprx. 1 g/mL) we <u>calculate the necessary moles of KNO₃</u>:
- 275 mL water ≅ 275 g water
- moles KNO₃ = molality * kg water = 3.90 * 0.275
- moles KNO₃ = 1.0725 moles KNO₃
Finally we <u>convert KNO₃ moles to grams</u>, using its molecular weight:
- 1.0725 moles KNO₃ * 101.103 g/mol = 108.43 grams KNO₃
Answer:
- <u><em>1.7 × 10³ kg of ore.</em></u>
Explanation:
Call X the amount of aluminum ore mined to produce 1.0 × 10³ kg the aluminum metal.
Then, taking into account the yield of the reaction (82 % = 0.82) and the percent of aluminun in the ore (71% = 0.71), you can write the following equation:
- X × 71% × 82% = 1.0 × 10³ kg
↑ ↑ ↑ ↑
(mass of ore) (% of Al in the ore) (yield) ( Al metal to obtain)
You must just simplify, solve and compute:
- X = 1,000 / (0.71 × 0.82) = 1,000 / 0.5822 = 1,717.6 Kg
Round to two significant figures; 1,700 kg = 1.7 × 10³ kg of ore ← answer.
Ca, Sr, Ba have similar chemical properties.
Explanation: They are in the same group (Alkaline Earth Metals)