Answer:

Explanation:
Given that,
The distance between two spheres, r = 25 cm = 0.25 m
The capacitance, C = 26 pF = 26×10⁻¹² F
Charge, Q = 12 nC = 12 × 10⁻⁹ C
We need to find the work done in moving the charge. We know that, work done is given by :

Put all the values,

So, the work done is
.
Answer:
Yeah ice floats on water.
Observation
Example in those areas were ice is found like Antarctica ice is found on top of water.
Explanation:
Mass of the astronaut, m₁ = 170 kg
Speed of astronaut, v₁ = 2.25 m/s
mass of space capsule, m₂ = 2600 kg
Let v₂ is the speed of the space capsule. It can be calculated using the conservation of momentum as :
initial momentum = final momentum
Since, initial momentum is zero. So,



So, the change in speed of the space capsule is 0.17 m/s. Hence, this is the required solution.
Answer:
Explanation:
ASSUMING your speed is constant
f₀ = f(v + vo)/(v + vs)
Δf = f approach - f depart
69.5 = (769(343 + vo)/(343 + 0)) - (769(343 - vo)/(343 + 0))
69.5 = 769(2vo/343)
vo = 15.5 m/s
Answer:
<em>d. The sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is larger than for absorbing sail, therefore the radiation pressure is larger for the reflective sail.</em>
<em></em>
Explanation:
Let us take the momentum of a photon unit as u
we know that the rate of change of momentum is proportional to the force exerted.
For a absorbing surface, the photon is absorbed, therefore the final momentum is zero. From this we can say that
F = (u - 0)/t = u/t
for a unit time, the force is proportional to the momentum of the wave due to its energy density. Therefore,
F = u
For a reflecting surface, the momentum of the wave strikes the sail and changes direction. Since we know that the speed of light does not change, then the force is proportional to
F = (u - (-u))/t = 2u/t
just as the we did above, it becomes
F = 2u.
From this we can see that the force for a reflective sail is twice of that for an absorbing sail, and we know that the pressure is proportional to the force for a given area. From these, we conclude that <em>the sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is larger than for absorbing sail, therefore the radiation pressure is larger for the reflective sail.</em>
<em></em>