1. Developing renewable energy technology
- Efficient energy storage and smarter grids .
- renewable and rechargeable batteries and fuel cell
2. Saving endangered wildlife
-smart collars for endangered species and reducing human - animal conflict
-Gene sequencing for detecting and researching on deadly animal diseases.
3. Adopting a smarter lifestyle
- smart homes that promote energy saving and green - living .
- electric cars which are three times more conventional vehicles .
Hope this helps :)
Answer:

t'=1.1897 μs
Explanation:
First we will calculate the velocity of micrometeorite relative to spaceship.
Formula:

where:
v is the velocity of spaceship relative to certain frame of reference = -0.82c (Negative sign is due to antiparallel track).
u is the velocity of micrometeorite relative to same frame of reference as spaceship = .82c (Negative sign is due to antiparallel track)
u' is the relative velocity of micrometeorite with respect to spaceship.
In order to find u' , we can rewrite the above expression as:


u'=0.9806c
Time for micrometeorite to pass spaceship can be calculated as:

(c = 3*10^8 m/s)


t'=1.1897 μs
Answer:
The final temperature of both objects is 400 K
Explanation:
The quantity of heat transferred per unit mass is given by;
Q = cΔT
where;
c is the specific heat capacity
ΔT is the change in temperature
The heat transferred by the object A per unit mass is given by;
Q(A) = caΔT
where;
ca is the specific heat capacity of object A
The heat transferred by the object B per unit mass is given by;
Q(B) = cbΔT
where;
cb is the specific heat capacity of object B
The heat lost by object B is equal to heat gained by object A
Q(A) = -Q(B)
But heat capacity of object B is twice that of object A
The final temperature of the two objects is given by

But heat capacity of object B is twice that of object A

Therefore, the final temperature of both objects is 400 K.
The answer to the question is:
75m/s
Just do 25*3