Answer:
500J
Explanation:
The arrow will have an energy of 500J after it has been released from its state of rest.
This is compliance with the law of conservation of energy which states that "in every system, energy is neither created nor destroyed but transformed from one form to another".
- The energy at rest which is the potential energy is 500J
- This energy will be converted to kinetic energy in total after the arrow has been released.
- This way, no energy is lost and we can account for the energy transformations occurring.
Answer : When we increase the temperature of an exothermic reaction the equilibrium will shift to the left direction i.e, towards the reactant.
Explanation :
Le-Chatelier's principle : This principle states that if any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
As the given reaction is an exothermic reaction in which the heat is released during a chemical reaction. That means the temperature is decreased on the reactant side.
For an exothermic reaction, heat is released during a chemical reaction and is written on the product side.

If the temperature is increases in the equilibrium then the equilibrium will shift in the direction where, temperature is getting decreased. Thus, the reaction will shift to the left direction i.e, towards the reactant.
Hence, when we increase the temperature of an exothermic reaction the equilibrium will shift to the left direction i.e, towards the reactant.