Answer: Jupiter's mass
Explanation:
From Kepler's third law:

where T is the orbital period of a satellite, a is the average distance of the satellite from the Planet, M is the mass of the planet, G is the gravitational constant.
If the average distance of one of Jupiter's moons to Jupiter and its orbital period around Jupiter is given then mass of the Jupiter can be found:

Answer: The minimum acceleration for the air plane is 2.269m/s2.
Explanation: To solve such problem the equation of motion are applicable.
The initial velocity is 0 since the airplane was initially standing. We are going to use this equation
V^2=U^2+2as
33^2=0+2a (240)
a= 2.269m/s2
Answer:
this situation would not be physically possible
Answer:

Explanation:
Given data
time=0.530 h
Average velocity Vavg=19.0 km/s
To find
Displacement Δx
Solution
The Formula for average velocity is given as

Answer:

Explanation:
The magnitude of the electrostatic force between two charged objects is

where
k is the Coulomb's constant
q1 and q2 are the two charges
r is the separation between the two charges
The force is attractive if the charges have opposite sign and repulsive if the charges have same sign.
In this problem, we have:
is the distance between the charges
since the charges are identical
is the force between the charges
Re-arranging the equation and solving for q, we find the charge on each drop:
