Answer:
The correct answer will be "
". The further explanation is given below.
Explanation:
The potential energy will be,
⇒ 
The expression of force will be,
⇒ 
⇒ 
⇒ 
Force seems to be appealing because the expression has been negative. It therefore means that the force or substance is acting laterally in on itself.
Answer:
Explanation:
Exercise controls weight. Exercise can help prevent excess weight gain or help maintain weight loss. ...
Exercise combats health conditions and diseases. ...
Exercise improves mood. ...
Exercise boosts energy. ...
Exercise promotes better sleep. ...
Exercise puts the spark back into your sex life. ...
Exercise can be fun … and social!
Answer:
Explanation:
A mass of 700 kg will exert a force of
700 x 9.8
= 6860 N.
Amount of compression x = 4 cm
= 4 x 10⁻² m
Force constant K = force of compression / compression
= 6860 / 4 x 10⁻²
= 1715 x 10² Nm⁻¹.
Let us take compression of r at any moment
Restoring force by spring
= k r
Force required to compress = kr
Let it is compressed by small length dr during which force will remain constant.
Work done
dW = Force x displacement
= -kr -dr
= kr dr
Work done to compress by length d
for it r ranges from 0 to -d
Integrating on both sides
W = 
= [ kr²/2]₀^-4
= 1/2 kX16X10⁻⁴
= .5 x 1715 x 10² x 16 x 10⁻⁴
= 137.20 J
<u>Answer:</u> The final temperature of the solution is 
<u>Explanation:</u>
The amount of heat released by coffee will be absorbed by aluminium spoon.
Thus, 
To calculate the amount of heat released or absorbed, we use the equation:

Also,
..........(1)
where,
q = heat absorbed or released
= mass of aluminium = 39 g
= mass of coffee = 166 g
= final temperature = ?
= temperature of aluminium = 
= temperature of coffee = 
= specific heat of aluminium = 
= specific heat of coffee= 
Putting all the values in equation 1, we get:
![39\times 0.904\times (T_{final}-24)=-[166\times 4.1801\times (T_{final}-83)]](https://tex.z-dn.net/?f=39%5Ctimes%200.904%5Ctimes%20%28T_%7Bfinal%7D-24%29%3D-%5B166%5Ctimes%204.1801%5Ctimes%20%28T_%7Bfinal%7D-83%29%5D)

Hence, the final temperature of the solution is 
Answer:
velocity during second d = 20.0 mi/h
Explanation:
Total distance travelled is 2d, with an average velocity of 30.0 mi/h you can express the time travelled in terms of d:
distance = velocity * time
time = distance / velocity
time = 2d/30.0
The time needed for the first d at 60.0 is:
time = d/60.0
The time in the second d you can get it by substracting both times (total time - time for the first d)
second d time = 2d/30.0 - d/60.0
= 4d/60.0 - d/60.0
= 3d/60.0
and with the time (3d/60.0) and the distance travelled (d) you can get the velocity:
velocity = distance / time
velocity = d / (3d/60.0)
= 60.0/3 = 20.0 mi/h