Answer:
Electromagnetic Induction or Induction is a process in which a conductor is put in a particular position and magnetic field keeps varying or magnetic field is stationary and a conductor is moving. This produces a Voltage or EMF (Electromotive Force) across the electrical conductor.
Answer:
Diamagnetic
Explanation:
Hunds rule states that electrons occupy each orbital singly first before pairing takes place in degenerate orbitals. This implies that the most stable arrangement of electrons in an orbital is one in which there is the greatest number of parallel spins(unpaired electrons).
For vanadium V ion, there are 18 electrons which will be arranged as follows;
1s2 2s2 2p6 3s2 3p6.
All the electrons present are spin paired hence the ion is expected to be diamagnetic.
The energy transfer in terms of work has the equation:
W = mΔ(PV)
To be consistent with units, let's convert them first as follows:
P₁ = 80 lbf/in² * (1 ft/12 in)² = 5/9 lbf/ft²
P₂ = 20 lbf/in² * (1 ft/12 in)² = 5/36 lbf/ft²
V₁ = 4 ft³/lbm
V₂ = 11 ft³/lbm
W = m(P₂V₂ - P₁V₁)
W = (14.5 lbm)[(5/36 lbf/ft²)(4 ft³/lbm) - (5/9 lbf/ft²)(11 lbm/ft³)]
W = -80.556 ft·lbf
In 1 Btu, there is 779 ft·lbf. Thus, work in Btu is:
W = -80.556 ft·lbf(1 Btu/779 ft·lbf)
<em>W = -0.1034 BTU</em>
The increase in potential energy of his mother if her mass is 56.0 kg will be 6031.97 J.
<h3>What is gravitational potential energy?</h3>
The energy that an item has due to its location in a gravitational field is known as gravitational potential energy.
The potential energy increases by 3773 J
PE₂-PE₁=mg(h₂-h₁)
3773 J = 35.0 × 9.81 × (h₂-h₁)
(h₂-h₁) = 10.98
Case 2 ;
ΔPE =?
ΔPE=mg(h₂-h₁)
ΔPE=56.0 × 9.81 ×10.98
ΔPE=6031.97 J.
Hence, the increase in potential energy of his mother if her mass is 56.0 kg will be 6031.97 J.
To learn more about the gravitational potential energy, refer;
brainly.com/question/3884855#SPJ1
#SPJ1