Answer:
The value 
Explanation:
From the question we are told that
The volume blood ejected is 
The velocity of the blood ejected is 
The density of blood is 
The heart beat is 
The average force exerted by the blood on the wall of the aorta is mathematically represented as

=> 
=> 
The range of potential energies of the wire-field system for different orientations of the circle are -
θ U
0° 375 π x 
90° 0
180° - 375 π x 
We have current carrying wire in a form of a circle placed in a uniform magnetic field.
We have to the range of potential energies of the wire-field system for different orientations of the circle.
<h3>What is the formula to calculate the Magnetic Potential Energy?</h3>
The formula to calculate the magnetic potential energy is -
U = M.B = MB cos 
where -
M is the Dipole Moment.
B is the Magnetic Field Intensity.
According to the question, we have -
U = M.B = MB cos 
We can write M = IA (I is current and A is cross sectional Area)
U = IAB cos 
U = Iπ
B cos 
For
= 0° →
U(Max) = MB cos(0) = MB = Iπ
B = 5 × π ×
× 3 ×
=
375 π x
.
For
= 90° →
U = MB cos (90) = 0
For
= 180° →
U(Min) = MB cos(0) = - MB = - Iπ
B = - 5 × π ×
× 3 ×
=
- 375 π x
.
Hence, the range of potential energies of the wire-field system for different orientations of the circle are -
θ U
0° 375 π x 
90° 0
180° - 375 π x 
To solve more questions on Magnetic potential energy, visit the link below-
brainly.com/question/13708277
#SPJ4
To solve this problem we will apply the concepts related to the conservation of momentum. Momentum is defined as the product between mass and velocity of each body. And its conservation as the equality between the initial and final momentum. Mathematically described as

Here
= Mass of big fish
= Mass of small fish
= Velocity of big fish
= Velocity of small fish
= Final Velocity
The big fish eats small fish and the final velocity is zero. Rearrange the equation for the initial velocity of small fish we have


Replacing we have,


The negative sign indicates that the small fish is swimming in the direction opposite to that of the big fish.
Therefore the speed of the small fish is 10m/s
Answer:
A low difference in the concentration of the molecule across the media
Explanation:
Diffusion is a type of passive transport where the molecules move in the influence of concentration gradient of diffusing molecules i.e. from the higher concentration region to the lower concentration region. There are some factors which affect the rate of diffusion, these are written below -
- Mass of diffusing molecule - lighter molecules diffuse faster and heavier one diffuse relatively slower.
- Concentration gradient - rate of diffusion is higher if the difference in concentration of the diffusing particles is larger in the two regions.
- Distance traveled - molecules diffuse faster if they need to travel little distance during diffusion.
- Temperature - rate of diffusion will be greater at higher temperatures because the movement of diffusing molecules gets increased.
- Solvent density - rate of diffusion tend to be lower if the solvent has higher density.
Looking at these factors we can conclude that the second statement in the question tells about a negative impact regarding the diffusion because due to low difference in concentration across the two media, the rate of diffusion will be lower.
Si units or Systeme' de Internationale' is a widely adopted unit system in measuring basic and derived dimensions In this case, the SI units here are kilograms, meter and seconds. Pounds is an English unit. mass is the measure of <span>how much matter an object contains, hence the answer is A. 43 kg.</span>