I'm not really sure it's been awhile since I did this.
Answer:
<em>The initial speed of the sprinter was 2.2 m/s</em>
Explanation:
<u>Constant Acceleration Motion</u>
It's a type of motion in which the velocity of an object changes by an equal amount in every equal period of time.
The following relation applies:

Where a is the constant acceleration, vo the initial speed, vf the final speed, and t the time.
The sprinter speeds up from an unknown initial speed to vf=3 m/s in t=2 seconds with an acceleration of
.
To find the initial speed, we solve the equation for vo:

Substituting the values:



The initial speed of the sprinter was 2.2 m/s
Answer:
The acceleration of the satellite is 
Explanation:
The acceleration in a circular motion is defined as:
(1)
Where a is the centripetal acceleration, v the velocity and r is the radius.
The equation of the orbital velocity is defined as
(2)
Where r is the radius and T is the period
For this particular case, the radius will be the sum of the high of the satellite (
) and the Earth radius (
) :


Then, equation 2 can be used:
⇒ 


Finally equation 1 can be used:

Hence, the acceleration of the satellite is 
Explanation:
Initial speed of the rocket, u = 0
Acceleration of the rocket, 
Time taken, t = 3.39 s
Let v is the final velocity of the rocket when it runs out of fuels. Using the equation of kinematics as :

Let x is the initial position of the rocket. Using third equation of kinematics as :


Let
is the position at the maximum height. Again using equation of motion as :

Now
and v and u will interchange



x = 524.14 meters
Hence, this is the required solution.
Answer:
Q = 40.1 degrees
Explanation:
Given:
- The weight of the timber W = 670 N
- Water surface level from pivot y = 2.1 m
- The specific density of water Y = 9810 N / m^3
- Dimension of timber = (0.15 x 0.15 x 0.0036) m
Find:
- The angle of inclination Q that the timber makes with the horizontal.
Solution:
- Calculate the Flamboyant Force F_b acting upwards at a distance x along the timber, which is unknown:
F_b = Y * V_timber
F_b = 9810*0.15*0.15*x
F_b = 226.7*x N
- Take static equilibrium conditions for the timber, and take moments about the pivot:
(M)_p = 0
W*0.5*3.6*cos(Q) - x/2 * F_b*cos(Q) = 0
- Plug values in:
670*0.5*3.6 - x^2 * 0.5*226.7 = 0
x^2 = 1206 / 113.35
x = 3.26 m
- Now use the value of x and vertical height y to compute the angle of inclination to be:
sin(Q) = y / x
sin(Q) = 2.1 / 3.26
Q = sin^-1 (0.6441718)
Q = 40.1 degrees