The most common unit is meters (m for short). It is the base unit for distance or displacement in the metric system. If you are dealing with larger distances, you might use kilometers (I'm for short) which is just 1000 meters. On the other hand, centimeter (cm) are used for small distances and are 1/100 of a meter. Another common unit is millimeters (mm) which is 1/1000 of a meter.
card games
board games
bird watch
write a song
make a game
count stuff
throw a ball with someone
play outside
As we know that as per Newton's II law we have

here we will have
= change in momentum
= time interval in which momentum is changed
now in order to have least injury during jumping we need to have least force on the jumper
so in order to have least force we can say that the momentum must have to change in maximum time so that amount of force must be least
So we need to increase the time in which momentum of the system is changed
Answer:
Tension in the string is equal to 58.33 N ( this will be the strength of the string )
Explanation:
We have given mass m = 1.7 kg
radius of the circle r = 0.48 m
Kinetic energy is given 14 J
Kinetic energy is equal to 
So 

v = 4.05 m/sec
Centripetal force is equal to 
So tension in the string will be equal to 58.33 N ( this will be the strength of the string )
-- Bob covered a distance of (32m + 45m) = 77 meters.
-- His displacement is the straight-line distance and direction
from his starting point to his ending point.
The straight-line distance is
D = √(32² + 45²)
D = √(1,024 + 2,025)
D = √3,049 = 55.22 meters
The direction is the angle whose tangent is (32/45) south of east.
tan⁻¹(32/45) = tan⁻¹(0.7111...) = 35.42° south of east.