Answer:
Elements in the same period have the same number of electron shells; moving across a period (so progressing from group to group), elements gain electrons and protons and become less metallic. This arrangement reflects the periodic recurrence of similar properties as the atomic number increases.
Explanation:
The Periodic Table can predict the properties of new elements, because it organizes the elements according to their atomic numbers. ... They hope that the two nuclei at the centre of these atoms will fuse and form a heavier nucleus. When these heavy elements form, they are usually highly unstable.
It is based on the idea that all the present continents were on supercontinent.
Explanation:
F = 20N m= m1 a=10m/s²
m=m2 a=5m/s²
F = ma
<u>for the first one</u><u>:</u><u> </u>
f=m1 × a
20 = m1 ×10
20=10m1
m1=20/10
m1=2
<u>for</u><u> </u><u>the</u><u> </u><u>second</u><u> </u><u>one</u><u> </u><u>:</u>
f=m2×a
20=m2×5
m2= 20/5
m2= 4
since F=ma
F=(m1+m2) ×a
F =(4+2)×a
F =6×a
F=20(from the question above )
20=6×a
a=20/6
a=3.33
If the distance between two charges is halved, the electrical force between them increases by a factor 4.
In fact, the magnitude of the electric force between two charges is given by:

where
k is the Coulomb's constant
q1 and q2 are the two charges
r is the separation between the two charges
We see that the magnitude of the force F is inversely proportional to the square of the distance r. Therefore, if the radius is halved:

the magnitude of the force changes as follows:

so, the force increases by a factor 4.
Answer:
4.384 * 10^13
Explanation:
Given the expression :
[(6.67 * 10^-11) * (1.99 * 10^30)] ÷ [(1.74*10^3)*(1.74*10^3)]
Applying the laws of indices
[(6.67 * 1.99) *10^(-11 + 30)] ÷ [(1.74 * 1.74) * 10^3+3]
13.2733 * 10^19 ÷ 3.0276 * 10^6
(13.2733 / 3.0276) * 10^(19 - 6)
4.3840996 * 10^13
= 4.384 * 10^13